Texas Instruments T1-99/4A Computer

Quick Guide to Tl BASIC

ABS (page I1-92)
ASC (page 1I-100)
ATN (page 1I-92)

BREAK (page 11-30)
BYE (page 11I-24)

CALL CHAR (page II-76)
CALL CLEAR (page I1-72)
CALL COLOR (page 11-73)
CALL GCHAR (page [1-86)
CALL HCHAR (page TI-80)
CALL JOYST (page 11-90)
CALL KEY (page 11-87)
CALL SCREEN (page 11-75)
CALL SOUND (page I1-84)
CALL VCHAR (page 11-83)
CHAR (page 11-76)

CHRSE (page II-100)
CLEAR (page 11-72)
CLOSE (page 11-123)
COLOR (page 11-73)
CONTINUE (page 11-35)
COS (page 11-93)

DATA (page 11-63)
DEF (page 11-105)
DELETE (page 11-43)
DIM (page 11-110)
DISPLAY (page I1-70)

EDIT (page 11-38)
END (page 11-47)

EOF (page I1-130)
EXP (page 11-93)

FOR-TO-STEP (page 11-53)

GCHAR (page 11-86)
GOSUB (page 1I-114)
GOTO (page 11-49)

HCHAR (page [1-80)

IF-THEN-ELSE (page I1-51)
INPUT-with files (page [1-125})
INPUT-with keyboard (page I1-58)
INT (page 11-94)

JOYST (page I1-90)
KEY (page 1I-87)

LEN (page I1-101)
LET (page 11-45)

LIST (page I1-21)
LOG (page 11-94)

NEW (page 11-20)
NEXT (page 11-56)
NUMBER (page I1-25)

OLD (page 11-42)
ON-GOSUB (page 11-117)
ON-GOTO (page 11-50)
OPEN (page 11-119)
OPTION BASE (page 11-112)

POS (page 11-101)
PRINT-with files (page [I-131}
PRINT-with screen (page 11-65)

RANDOMIZE (page 1I-95)

READ (page 11-61}

REM (page 11-46)

RESEQUENCE (page II-28)
RESTORE-with files (page 11-136)
RESTORE-with DATA (page [1-64)
RETURN (page 11-116)

RND (page 11-96)

RUN (page I1-23)

SAVE (page 11-40)
SCREEN (page 1I-75)
SEGS (page 11-102)
SGN (page 11-97)
SIN (page 11-97}
SOUND (page I1-84)
SQR (page 11-98)
STOP (page I1-48)
STRS (page 11-103)

TAB (page 11-68)
TAN (page 11-98)
TRACE (page I1-36)

UNBREAK (page 11-33)
UNTRACE (page 11-37)

VAL (page 11-103)
VCHAR (page 11-83)

IMPORTANT

Record the serial number and purchase date of the TI Computer in the space
below. The serial number is identified by the words "SERIAL NQO." on the
unit. Always reference this information in any correspondence.

T1 Computer
Model No.

Serial No. Purchase Date

TI Color Monitor

Serial No. Purchase Date

Copyright * 1979, 1980, 1981, Texas Instruments Incorporated

TEXAS INSTRUMENTS T1-99/4A COMPUTER %j@L
)

LCB-4491

User’s

Reference
Guide

A complete, detailed guide to using and enjoying
your Texas Instruments TI-99/4A Computer.

Texas Instruments invenied the inlegrated circuit, microprocessor,
and microcomputer — technological milestones that made today’'s
small computers a reality. T1 is a world leader in producing reliable.
aflordable advanced electronics.

See important warranty information at back of book.

T his book was developed by:

The Staff of the Texas Instruments Learning Center
and

The Staff of the Texas Instruments Personal
Computer Division

Artwork and layout were coordinated and executed by:
Schenck Design Associates., Inc.

Federal Communications Commission Requirements Concerning Radio Frequency Interference

The Texas Instruments TI1-99/4A Computer generates and uses radio frequency (RF) energy. If not
installed and used properly (as outlined in the instructions provided by Texas Instruments}, the
computer may cause interference to radio and television reception.

The computer has been type-tested and found to comply with the limits for a Class B computing
device in accordance with the specifications in Sub-part J of Part 15 of FCC Rules. These rules
are designed to provide reasonable protection against radio and television interference in a
residential installation. However, there is no guarantee that interference will not occur in a
particular installation.

If this equipment does cause interference to radio or television reception (which you can

determine by turning the equipment off and on), try to correct the interference by one or more of

the following measures:

B Reorient the receiving antenna (that is, the antenna for the radio or television that is
"receiving’ the interference).

m Change the position of the computer with respect to the radio or television cquipment that is
receving interference,

B Move the computer away from the equipment that is receiving interference.

® Plug the computer into a different wall outlet so that the computer and the equipment receiving
interference are on different branch circuits.

If these measures do not eliminate the interference, please consult your dealer or an experienced
radio/television technician for additional suggestions. Also, the Federal Communications
Commission has prepared a helpful booklet, "How to Identify and Resolve Radio-TV
Interference Problems.” This booklet 15 available from

The US Government Printing Office

Washington, D.C. 20402

Please specify Stock Number 004-000-00345-4 when ordering copies.

WARNING: This equipment has been certified to comply with the limits for a Class B
computing device, persuant to Subpart | of Part 15 of FCC Rules. Only peripherals (computer
input/output devices, terminals, printers, etc.) certified to comply with the Class B limits may be
attached to this computer. Operation with non-certified peripherals is likely to result in
interference to radio and TV reception.

[SBN#{-86512-048-8
Library of Congress Catalog #81-51829

Copyright € 1979, 1980, 1981, Texas Instruments Incorporated

.. User's Reference Guide
11

Table of Contents

L GENERAL INFORMATION. . . e e I-1
TnrodUGTiOn .« . ot oo e e e e I-1
Powerful T BASIC e e [-1
Convenient Module System. -ot I-1
Tape and Piskette PTOgIams. oo e 11
Using This Book I-1
Placement and Care.ttt et e e I-1
Monitor-Console COmNECtion\ttt it e e e e e I-2
If You Are Using the TI Color Monitor i, [-2

If You Are Using Your Television Set and the TI-900 Video Modulator [-2
Connect Power Cords e 1-3
Check the CONNECTIONS . .« . oottt e e e e e e e e e I-3

A Tour of Your COMPUErot e 1-4
Getting Started. e I-4

A Tourofthe Keyboard I-5
Automatic Repeat .. .« ..ot e I-5

Alphabet Keys e I-5

Alpha Lock. I-5

Number Keysot I-5
Punctuation and Symbol Keys I-5

Special Function Keys. I-5

Special Control Keys. I-6
Keyboard Overlay I-6

Math or Operation Keys I-6

Space Bar. 1-7
Correcting ErTors. -o 1-7

B TS BOTIBS . « . . o o oot e e 1-7
TI Disk Memory System oo I-7

T1 Solid State Speech™Synthesizer.o 1-7

TI Solid State Thermal Printer. I-8

TI Wired Remote Controllers i 1-8

TI RS232 Interface e 1-8

TI Telephone Coupler (Modem) i i I-8

TI Audio Adapter. o e [-8

TI Memory Expansion UnIt - oot [-8
Cassette Interface Cable e 1-8
Connecting the Recorder. I-9
ToSave/Load Datao 1-9

To Save/Load Datain TIBASIC. o [-10

To Save Data When UsingaModule oo I-10

To Load Data When UsingaModule. o ot [-12

User's Reference Guide

Table of Contents

Il. BASIC REFERENCE SECTION

INtrodUuction e e e e I1-2
How This Section s Organized o II1-3
Notational Conventions« o v ot et e e e I1-3
Examples . .. e I1-3

General Information. e II-4
INtrodUCHION -« « o o o e e e e e e 11-4
Special Keys. e e 1I-5
Blank Spaceso II-7

Line NUmbers. .« e I1-8
Numeric COmSTAILS. - o o e e II-9
Scientific Notation e I1-9
String ConsStants. e e [1-10
VA A S . . . e 11-11
Numeric EXpPressions. e [1-12
Relational EXPressions it [I-14
String EXpressions. 11-15
Reserved Words e I1-16
Statements Used as Commands e 11-17
Commands Used as Statementsot o ittt st et e e i1-18

Commands oo I1-19
Introduction e e I1I-19
N EW . e 11-20
LIS T . I1-21
RUN o 11-23
BYE i1-24
NUMBER. . .. 11-25

Editing in Number Mode iI-26
RESQUENCE. e 11-28
BREAK . I1-30
UNBREAK . . I1-33
CONTINUE. . o e e I1-35
T RACE . o e e e II-36
UNT RACE . e e e e II-37
E DT . o e e II-38
SAVEE e e I1-40
O LD . e e e 11-42
DELETE . . e e 1143

General Program Statementso oo e 11-44
Introduction oot e I1-44
LT I1-45
REM . . e 11-46
EN D . e 11-47
ST O . .o e I1-48
GOTO. .. 11-49
NGO T O . . e e 11-50
IF-THEN-ELSE e e II-51
FOR T O ST EP . .. e e e II-53
NEX T o 11-56

User’s Reference Guide

Table of Contents

Input-Output SLAtEMENtS oo o e [1-57
INEEOdUCHION © © . o e e e e e e e e e e II-57
INPUT . 11-58
READ . . I1-61
DA A e 11-63
RESTORE e I1-64
PRIN T .. e e 11-65
DI ISP LAY . . e e [1-70

Color Graphics and Sound I11-71
THEOAUELION .« . o o ot e e e e e e e 11-71
AT . L AR . e e e e e 11-72
CALL COLOR. e I1-73
CALL SCREEN . .. e e e e 11-75
CALL CHAR e e e I1-76
CALL H OHAR . . e e e e e i1-80
CALL VCH AR . o e e 1I-83
CALLSOUND A 11-84
CALL GUHAR . . . e e e e e I1-86
CALL KEY . e e [1-87
CALL JOYST oo e e e e 11-90

Built-In Numeric FUBCHONS . .« - o o ot et e e et e e e e s 11-91
IntrodUCtion . o o o o e e e 11-01
A B . e e 11-92
AN 11-92
S 1I-93
E X P . . e 11-93
IN T . e [1-94
LOG I1-94
RAND OMIZE . . o o o e e e e e e 1I-95
RN D . o e 11-96
SGN . e 11-97
S I e e e 11-97
SR . e I1-98
AN I1-98

Built-In String Functions. 1I-90
Introduction o oo e e e 11-99
A 11-100
CHER S . . . 11-100
LEN o e e 11101
PO S . o e e e 11-101
SEGSE . .. II-102
ST RS . . 11-103
VAL . e e e I1-103

User-Defined FUNCUONS o0 oo e e e e e e 11-104
INErOdUCHON « © o o o e e e e e e e e 11-104
DEE e e 11-105

e - O 11-108
IntrodUetiOn « o o o o o e e [1-108
DM . . 1I-110
OP TTION BASE . . . e e e e 1-112

User’s Reference Guide

Table of Contents

Subroutines. II-113

Introduction 11-113

GOSUB. . . II-114

RETURN . . . [I-116

ON-GOSUB . . . 11117

File Processing. 1I-118

Introduction 1I-118

OPEN . . 1-119

CLOSE . . e 11-123

INPU T . I1-125

EOF ol II-130

PRINT . e 11-131

RESTORE. 1I-136

lll. APPENDIX TO BASIC REFERENCE SECTION II-1

ASCII Character Codes. i e e e I11-1

Functionand Control Keys I11-2

Keyboard Mapping. e 111-3

Character Codes for Split Keyboard., [1i{-4

Pattern-Identifier Conversion Table I1I-5

Color Codes e e e III-5

High-Resolution Color Combinations [11-6

Musical Tone Frequencies. 11-7

Error MeSsages . . . e I11-8

Accuracy Information. L 1I1-13

Applications Programs. e I11-14

IV, GLOS S ARY e Iv-1

V. MAINTENANCE AND SERVICE INFORMATION _ V-1

VL INDEX . . . e VI-1
WARRANTY

Vi User’s Reference Guide

General Information

INTRODUCTION

You are about to be introduced to the exciting
new world of the personal computer. Until just a
few years ago, the size. price, and complexity of
computers put them beyond the reach of the
individual purchaser. Today, Texas Instruments
Personal Computers bring you remarkable
computing power in affordable, compact units
that can be easily set up in your home, office, or
school.

Whether you have years of computer experience

or have never worked with computers before,

the innovative and flexible features of your

computer offer you a wide variety of

applications. Within minutes, you can begin

using your computer {o

B managc your pcrsonal resources

W develop projects for home and business

W bring new dimensions to education — for you
and your children

B provide engaging new types of entertainment
for the entire farmly

8 and much more.

Powerful Tl BASIC

TI BASIC, a simple but very powerful computer
language, is built right into your Texas
Instruments Computer. With TI BASIC, you
can develop and use your own computer
programs for applications ranging from color
graphics to statistical analysis and more. This
language makes your T1 computer a "true”
computer — not a video game or electronic toy.

Convenient Module System

The uniquc system of casy-to-use, snap-in Sofid
State Software™ Command Modules* assures
the continued versatility and usefulness of your
computer. These rugged, all solid-state modules
are completely preprogrammed for you. You just
snap them in, and they "prompt” you through
activities, applications, games, and
entertainment. With a module plugged into the
computer console, you can start using your
computer immediately. You can choose from a
wide selection of Command Module titles. Ask
your dealer to see all of them!

Tape and Diskette Programs
In addition to Command Modules, Texas

Instruments offers a variety of convenient
software on tape or diskette, ranging in

complexity from simple games applications to
high-level business and professional programs.
Like Command Modules, these applications are
ready for you to use, without any programming
on your part. Programs on cassette tape require
the Cassette Interface Cable* to connect the
computer and your cassette recorder, and
diskette programs require the T1 Disk Memory
System.* Ask you dealer to show you a list of
the many tape and diskette packages available
from T1 and other software developers.

USING THIS BOOK

The User’s Reference Guide is organized in the

following step-by-step fashior

B a brief discussion of the care of your new
computer.

B an explanation of how to connect the
computer to the monitor.

W a tour of your computer, starting with the
connector outlets and including the computer
keyboard.

B the accessories available for the computer.

B a BASIC reference section.

No special expertise or experience 18 necessary
to fully enjoy and utilize your T1 computer. The
simple instructions we provide here and in the
books enclosed with each software package, as
well as the prompting you rcceive from the
computer, are all you need to get "up and
running” quickly.

PLACEMENT AND CARE

First, find the right location for your computer
system. Select a place where sunlight or bright
light doesn't fall directly on the screen. Also, it's
best to place the system on a hard-topped non-
metallic surface, such as a table. DO NOT SET
THE COMPUTER CONSOLE ON TOP OF A
TELEVISION SET.

Correct ventilation is necessary for the
continued proper operation of your computer
system. Be sure air can flow freely through all
the ventilation slots on the bottoms, backs, and
tops of the console and monitor {or TV set, if
you're using the TI-900 Video Modulator and a
TV set). Do not obstruct the ventilation or
enclose the system in any way.

*sold separately

User's Reference Guide

I-1

General Information

From time to time you may want to clean the
surfaces of your computer. First, turn the
computer OFF. Then gently wipe the surface
using a damp, lint-free cloth. Do not use
solvents or other cleansers to clean the
computer console.

CAUTION: Electronic equipment can be
darnaged by static electricity discharges. Static
electricity build-ups can be caused by walking
across a carpet. If you build up a static charge
and then touch the computer, a Command
Module, or any accessory device, you can
permanently damage the internal circuits.
Always touch a metal object (a door knob, a
desk lamp, etc.) before working with your
computer, connecting accessory devices, or
handling or inserting a Command Maodule. You
may want to purchase a special anti-static spray
for the carpeting in the room where your
computer is located. This commercial
preparation is usually available from local
carpet, hardware, and office supply stores.

MONITOR-CONSOLE CONNECTION

When you have chosen the right location for
your computer, you are rcady to set up the
system. The hook-up instructions to follow
depend on whether you are using the TI Color
Monitor or your own television set as a video
display.

It You Are Using the TI Color Monitor

Connecting your computer to the TI Color

Monitor requires only two simple steps, using

the cable packed with the monitor.

1. Connect the 5-pin plug (called a "DIN" plug)
to your computer console at the point shown.

Connect
5 pin "DIN”
plug here.

Back of
Main Console

2. The other end of the cable {with two plugs)
connects to your monitor. Connect the larger
plug to the outlet labeled "VIDEQ" on the
back of your monitor and the smaller plug to
the outlet labeled "AUDIC" on the back of
your monitor as shown below.

ek Note: Do not attach the
- console directly to a
. television set using this
Pt gm?f‘? @ g

| ;
| cable. Connection of the
= console to a television

receiver must be made using
the T1-900 Video Modulator.

If You Are Using Your Television Set and the
Ti-900 Video Modulator

CAUTION: Federal Radiation F.mission
Standards set forth in Regulation 21 CFR 1020
do not apply to color television receivers
manufactured before January 15, 1970. To
avoid possible exposure to radiation emissions
in excess of the standards, Texas Instruments
recommends the use of the Video Modulator
only with TV receivers manufactured atter that
date.

Connecting the computer to your television set

requires the use of the TI-900 Video Moduiator.

To install the modulator. follow these steps.

1. Turn the television set and the computer
OFF.

2. Remove the VHF antenna cable from your
television set. {(If your set does not have a
standard antenna hookup similar to the one
shown below, please consult the Video
Modulator manual for more details.)

3. Connect the television interconnect cable,
marked "TV VHF" on the T1-900 Video
Modulator, to the VHF antenna terminals on
your television set.

Television
Intercornect it
Cable

Compurer
T-¥. Antenna Irderfuce
Cable Cable

I-2

User’s Reference Guide

General Information

4. Connect the VHF antenna cable that you just
removed from vour television set to the Video
Modulator terminals, marked "ANT."

5. Remove the paper backing from the double-
sided tape on the modulator and press the
unit against a flat surface on your television
set.

6. Connect the 5-pin "DIN™ plug of the computer
interface cable into the 5-pin socket on the
back of the console.

Connect
. 5 pin "DIN™
plug here.
Back of &

Main Console

Once the modulator is installed, set the "CH.
SELECT" switch on your Video Modulator and
the channel selector on your televsion set to the
same channel, either channel 3 or 4. If there 1s a
television station operating on one of these
channels in your arca. set the "CH. SELECT"
switch and the television to the other channel.

Then. to use vour television set as a computer
display, set the "TV/COMP." switch to "COMP.”

(When you are ready to watch television again,
set the "TV/COMP." switch to "TV.")

Connect Power Cords

Next. connect the power cord (with transformer)
to the computer. Connect the small 4-pin plug
end into the outlet on the back of the computer
as indicated below. Notice that the pins only line
up one way.

- &2

Power Cord
Connects Here

M~

Then. plug the power transformer into a regular
wall outlet. It is best to plug the transformer
into a wall autlet that is continuously "live,” not
one controlled by a wall switch. You may want
to secure the power transformer to the wall
outlet as in the sketch ahove. (Nofe: Some wall
plates may not have a screw location that
matches the transformer.)

Finally, plug either the monitor or television
power cord into a continuously “live” wall outlet,
(The color monitor is designed to operate on
120 volt 60 Hz AC. DO NOT ATTEMPT TO
OPERATE THE UNIT ON DC.) The power
supply cord has a plug with two blades and one
grounding pin as a safety feature. DO NO'V
ATTEMPT TO PLUG THE POWER CORD
INTO A 2-HOLE WALL OUTLET. If the plug
does not fit your wall outlet, contact an
electrician.

Check the Connections

Before you turn on your computer, follow these

steps:

m Check to see that all connections are secure.
B Make sure both the computer and the monitor
or your television set are plugged into a live

wall outlet.

B If you are using your own television set and a
TI-900 Video Modulator, set the "TV/
COMP.” switch on the modulator to "COMP.”
and be sure that the "CH. SELECT" switch
on the modulator and the channel selector on
your television are set to the same channel
(either 3 or 4, whichever is not a broadcasting
channel in your area).

Users Reference Guide

-3

General Information

A TOUR OF YOUR COMPUTER

Your computer console is the central part ot
your computer system. [t's designed so that all
of the other units of the system easily connect to
this console. No tools are required.

Getting Started

Let's look at the front and right side of your
computer.

1 This i the ON/OFF switch. The small light
next to the switch indicates when the
computer is ON.

2 Command Module software* snaps into this
outlet.

3 This keyvboard i1s used to type information
into the computer.

4 This outlet is for optional peripheral
accessories. Details arc included with the
appropriate peripheral.

This is the back and left side of the console:

5 The Cassette Interface Cable* conncets to
the console at this 9-pin "D7 outlet.

6 The Power Cord attaches to the consele at

this 4-pin outlet.

7 This 5-pin connector {also called a DIN
connector) 1s for audio-out and video-out.
This connector will insert easily when

properly aligned.

8 The Wired Remote Controllers connect to
this 9-pin vutlel. Details are tuciuded wath

the accessory.

(Note: Do not confuse this 9-pin outlet with
the 9-pin outlet on the back of the console,
They are not interchangeable.)

*s0ld separately

T4

User’s Reference Guide

General Information

A Tour of the Keyboard
Let's take a close look at the keyboard.

B = 5 - . & B ! 1 +
1 2 El] 5 € H & y U .

n w

n s [C F o - [3 L H ENTER

1.

SHET I3 = ‘ s l N] M M l i . SHIFT

A1 PHA
LGk CTAL SMACE [ER LY

The keyboard is like a standard typewriter,
with keys of several types. Pressing any key
causes its Jower-case (small capital) character to
display on the screen, and holding down the
SHIFT key while pressing any other key returns
the upper-case (large capital) character for that
key. Except for the alphabetical keys, each
key's upper-case character is printed at the top
of the key face, while the lower-case character
is printed at the bottom.

Some of the keys also have special functions, as
explained in the following sections.

AUTOMAI'IC REFPEAT

TI BASIC is designed with an automatic repeat
function. If you hold down the SPACE BAR or
any character key for more than one second,
that character is repeated until you release the
key.

ALPHABET KEYS

All alphabetical symbols are typed into the
computer using the alphabet keys. To capitalize
letters, hold down the SHIFT key and press the
ietter key, just as you would on a standard
typewriter keyboard.

ALPHA LOCK
Pressing ALPHA LOCK locks all the alphabetical
keys into their upper-case mode. The number

and punctuation keys are not affected. When
you press ALPHA LOCK again, the keyboard
returns to normal operation.

Note: When you are using the Wired Remote
Controllers, ALPHA LOCK must be in the off (up)
position.

NUMBER KEYS

The number keys are located on the top row of
your computer keyboard. If you have previous
typing experience, you need to be aware of two
differences between this keyboard and some
typewriter keyboards. With the computer, you
cannot type the letter "L as the number "1.”
Also. never substitute the letter "O” for a zero.
The computer screen displays the letter "O”
with squared corners and displays a zero with
rounded corners, so you'll be able to distinguish
them.

PUNCTUATION AND SYMBOL KEYS

The computer keyboard has the punctuation
and symbol keys which appear on a standard
typewriter, as well as several others used in
computer applications. To type any symbol
which appears on the bottom of a key face.
simply press the key. To type the upper symbol,
hold down the SHIFT key and press the symbol
key. Notice that punctuation marks and
symbols also appear on the fronts of some keys.
To type these symbols, hold down the FCTN key
and press the key.

SPECIAL FUNCTION KEYS

Several keys have varying functions in TI
BASIC, some Command Module software, and
other applications. The use of the keys is
described in detail in the appropriate sections of
this Guide or in the manuals that accompany the
various modules.

To activate any special function. except ENTER,
hold down the FETH koy and press the letter or
number key.

FCTN = (QUIT)

Pressing QUIT (at any time) returns the
computer to the master title screen. Note: When
vou press QUIT. all data or program materal
you have entered will be erased.

ENTER

In most cases, pressing the ENTER key tells the
computer to accept the information you have
just finished typing. Additional functions will be
explained in the appropriate manuals.

User's Reference Guide

I-5

General Information

FCTN - (LEFT)

Pressing the feff-arrow key (backspace) moves
the cursor to the left. The cursor does not erase
or change the characters on the screen as it
passes over them.

FCTN — (RIGHT)

Pressing the right-arrow key (forwardspace)
moves the cursor to the right. As the cursor
passes over the characters printed on the
screen, it does not alter them in any way.

FCTN 1 (UP)

FCTN 1 (DOWN)

These keys have various functions according to
the specific apphcation where they are used.
See the TI BASIC section in this book and the
appropriate software manuals for a complete
explanation of their use.

FCTN t (DEL)

The DELete key is used to delete a letter,
number, or other character from the lines you
type.

FCTN 2 (INS)

The INSert key is used to insert a letter,
number, or other character into the lines you
type.

FCTN 3 (ERASE)
Pressing the ERASE key before pressing ENTER
erases the line you are presently typing.

FCTN 4 (CLEAR)

This key is normally used to clear from the
screen any information you have typed (before
pressing ENTER). It also has additional functions
in TI BASIC. See "Special Keys" in the BASIC

Reference Section of this book for details of its

use in TI BASIC.

Other keys have special functions in software
applications. Some of these are:

FCTN 5 (BEGIN)

FCTN 6 (PROC'D)

FCTN 7 (AID)

FCTN 8 (REDO)

FCTN 9 (BACK)

SPECIAL CONTROL KEYS

The TI1 computer also has control characters
which are used primarily for
telecommunications. For a list of the standard
ASCII control characters included in your
computer, see "Control Key Codes” in the
Appendix. To enter a control character. hold
down the €TRL key and press the appropriate
letter or number key.

Keyboard Overlay

A two-level strip overlay is inctuded with your
computer. You can use this overlay to help you
more easily identify certain keys that are used in
combination with the FETN and CTRL keys.

The top level of functions, identified by the red
dot, are called control keys. To access these
keys, hold down the €TRL. key, marked with a
red dot, while pressing the appropniate number
or alphabet key. The second level of functions,
identified by the light gray dot, are accessed by
holding down the FCTN key, also marked with a
light gray dot. while pressing the appropriate
number or letter key.

MATH OR OPERATION KEYS

The Math keys (or operation keys) are the keys
used to instruct the computer to add. subtract,
multiply, divide, and raise a number to a power.

The symbols for addition, subtraction. and
equals are the usual ones you're familiar with.
but the multiplication and division symbols may
be new to you.

+ Addition
Subtraction
Multiplication
Division

Equals

o~

The "caret” key (A) is also used for
mathematical operations:

SHIFT A

This symbol tells the computer to perform
exponentiation (raising a number to a power).
Since 5' cannot be easily printed on your
screen, the computer interprets 5 A 3 to mean
that three is an exponent.

I-6

User's Reference Guide

General Information

The following keys are used to indicate
mathematical relationships in TT BASIC:

SHIFT > "Greater than”; this symbol is
used to compare two quantities.

SHIFT << “Less than”; this symbol is also
used to compare two quantities.

SPACE BAR

The SPACE BAR is the long bar at the bottom

of the keyboard. It operates just like the

space bar on a regular typewriter. When you
press the SPACE BAR, the computer leaves a
blank space between words, letters or numbers.

The $PACE BAR can also be used to erase
characters already on the screen. (See the
section titled "Correcting Errors.”)

Correcting Errors

To correct a typing error before you press
ENTER, move the cursor back to the character
you want to change (using the feft-arrow key).
Retype the correct character (or characters);
then move the cursor back to the end of the
word or phrase you were typing (using the right-
arrow key).

You can erase errors by using the SPACE BAR.
Backspace (using the /eft-arrow key) to a point
where you want to begin erasing. Then press
the SPACE BAR to move the cursor over the
characters on the screen. The characters are
erased.

In certain applications, you can also make
corrections using the DELete key and the INSert
key.

ACCESSORIES

A wide variety of accessories 1s available for use
with the computer. These accessories expand
the capabilities of your basic unit, letting you
build your system as you need it.

Ti Disk Memory System*

The T1 Disk Memory System is a mass storage
system, consisting of a 'I'l Disk Drive Controller
and one to three Disk Memory Drives. With the
system, you Camn Save your computer programs
for use at a later time, as well as enjoy
preprogrammed applications available on
diskette. In addition, some of the Command
Modules are designed to let you store data and
results from your computations.

The Disk Manager Command Module is
packaged with each Disk Drive Controller.
With the module, you can catalog a diskette,
name diskettes or files, delete files, copy
diskettes or files, protect your files, and test the
operation of your disk system.

Tl Solid State Speech™ Synthesizer*

The Solid State Speech™ Synthesizer gives your
TI computer a voice of its own and adds new
excitement and enjoyment to computer
applications through spoken words, phrases.
and sentences. To activate the Speech
Synthesizer, you must also have a specialized
Command Module* plugged into your computer
console. You can use the Speech Editor
Command Module, the Terminal Emulator 11
Command Module, or any other module which
is programmed for speech.

*30ld separately

User's Reference Guide

1-7

General Information

Tl Solid State Thermal Printer*

When the TI Solid State Thermal Printer is
connected to your computer, you can obtain a
printed copy of your program and data to aid
you in revising long programs or maintaining
files of programs and results. In addition, the
Thermal Printer can be used with some
software applications to print screen displays or
generate printed lists and reports.

The printer prints up to 32 characters on a line
and prints either characters from its resident
character set or special characters that you
define. Special features included in the printer
also let you control the amount of paper that is
ejected and the spacing between lines.

Tl Wired Remote Controllers*

The lightweight, compact Wired Remote
Controllers add greater freedom and versatility
to games, graphics, and sound applications on
your computer, without the need for keyboard
interaction. You can use the Remote Controllers
with certain softwarc applications or with your

own TI BASIC programs.

Note: When you are using the Wired Remote
Controllers, ALPHA LOCK must be in the off {up)
position.

TI RS232 Interface*

The Texas Instruments RS232 Interface allows
you to connect a wide range of EIA RS232C-
compatible accessory devices to your computer.
With the RS232 Interface attached to your
computer, you can list programs on a printer,
utilize a modem for telecommunications, print
graphs on a plotter, and much more.

Tl Telephone Coupler (Modem)*

Added to the RS232 Interface, the Telephone
Coupler (Modetn) enables your computer to
comumunicate over telephone lines with another
similarly equipped computer. If you also have a
TI Command Module* designed for
tclecommunications, you can access
subscription data base services.

Tl Audio Adapter®
The Audio Adapter provides a handy connector
for use with Y4"’-plug headphones.

TI Memory Expansion Unit*

The Memory Expansion unit adds 32K bytes of
Random Access Memory to the computer’s
built-in memory. In addition, the unit increases
the number of accessories which can be
connected to the computer. (Note: The Memory
Expansion unit requires the use of a Command
Module or an accessory designed to utilize the
unit. The TI BASIC programming language
built into the computer cannot make use of the
Memary Fxpansion unit)

Cassette Interface Cabile

You can further expand your computer system
by using audio cassette tape recorders. T1
BASIC allows you to store and retrieve data you
enter in the computer (programs. numerical
data, etc.). By recording data on a tape, you can
save 1t as a permanent record. Later you can
foad the data from the cassette tape into the
computer's memory if you want to use that
information again. Several of the command
modules also use this feature to save and load
data you've used in the module.

You can use either one or two recorders for this
purpose. Using two cassette recorders 15
especially helpful for advanced programming
applications.

*sold separately

1-8

User's Reference Guide

General Information

Many standard cassette recorders can be used
with the computer. For best operation, however.
they should have such features as:

& Volume control

m Tone control

® Microphone jack

B Remote jack

m Earphone or external speaker jack

B Digital tape counter {This will enable you to
easily locate the correct tape position in case
you want to store more than one program or
data set on the same tape.)

Since motor control desipgn varies from
manufacturer to manufacturer, we have tested
several different cassette recorders to determine
whether they can be used with the computer. A
list of recorders that appear to work well with
this computer is included separately. We've also
indicated the volume setting and tone contral
setting for each unit that give the best operating
results.

Texas Instruments can assume no responsibility
for any design changes made by the cassette
recorder manufacturers that might affect the use
of a specific recorder with the TI computer.

Carefully follow the directions for setting up and
using your recorder, as described in the
remainder of this section. If your cassette
recorder does not appear to be compatible with
the computer, try discomnecling the black wire
from the remote jack on the recorder and
operating the recorder manually. If you can save
or load data while operating the recorder
manually, but cannot do so when the black wire
is connected. you may continue to operate the
recorder manually or change to one of the
recommended cassette units.

Note: The cassette interface cable uses the
triple-plug end {or cassette number 1 "CS1.” and
the double-plug end for cassette number 2
"CS2 " Cassette unit 1 may be used for both
recording {writing) and reading; cassette unit 2
may be used for writing only.

CONNECTING THE RECORDER

To connect your cassette playeris) to the
computer. use the cassette interface cable. and
follow these simple steps:

1. Insert the single plug end of the cable with

the 9-pin "D” connector into the 9-pin outlet
on the back of the console (labeled "A").

2. Attach the triple plug ends into the cassette
recorder(s) as follows:

m Insert the plug with the red wire into the
microphone jack

m [nsert the plug with the black wire into the
remote jack (note that this plug is smaller
than the other two plugs)

B Insert the plug with the white wire into the
earphone jack (or external speaker jack) —
CS1 only.

3. Make sure you notice how the cassettes are
connected when you select either CS1 or U512
when saving data. When loading data, only
CS1 can be used. See TO SAVE/LOAD
DATA section for more information.

(Note: You will usually elect to connect only one
cassette recorder. The other plug end will
simply be inactive when only one recorder is
used with the computer.)

User's Reference Guide

[-9

General Information

After all cables are connected, turn the tone
control on your cassette player to full TREBLE
or to the point indicated on the table on the
separate cassette sheet. Set the volume at about
half scale (if the volume control has ten
positions, set it at five or at the position
indicated in the table). If your cassette player
does not have a tone control, you may have to
set the volume control higher for best results.

Noute. The Memory Expansion unit adds 32K bytes
of Random Access Memory (RAM) to the built-in
memory of the computer. However, even with
the Memory Expansion unit available, the
largest program that can be stored on a cassette
tape is 12K bytes in size. Note that, although

the length of the actual program is limited by

the amount of available built-in memory,

utilizing the Memory Expansion unit provides
other advantages. For example, with the unit
attached and turned on, your program can be up
to 12K bytes in length, while any data generated
by the program can be stored in the Memory
Expansion unit. Without the unit, the program
must be shorter so that both it and the

generated data can be stored in the computer's
built-in memory.

TO SAVE/LOAD DATA

If you have your cassette machine(s) connected
to the console as instructed, you are ready to
save/load data.

Before you attempt to save/load your data.

make sure that:

8 You are using high quality audio tape. Poor
quality tape yields poor performance.

B The tape is not fonger than C-60. Longer
tapes are thinner and provide less fidelity.

B The cassette machine is not located within
two feet of the monitor or a television set to
minimize magnetic field interference.

B The tape is never placed within two feet of the
monitor, a television set, an electric motor, or
any other strong source of magnetic fields to
avold accidental erasure of your data.

B The system (computer console, cassette
machine, and Color Monitor) 15 not located on
a continuous metallic surface to minimize
conducted noise.

B You are using only CS1 for LOAD. CS1 or
CS2 can be used for SAVE.

To Save/Load Data in TI BASIC

For complete instructions on how to save and
load data when you are programming in ‘T
BASIC, see the section on the SAVE command.

To Save Data When Using a Module

After you have entered vour data into the
computer and connected the recorder to the
computer (with a good quality tape cassette in
place), you are ready to begin recording. Select
the "SAVE" option offered by the module you're
using. The computer then offers you a list of
options for saving data. (Note: You'll get an error
message if you select an option for a device that
isn't connected to the console and turned ON)
Suppose, for example. that you want to save
your data on a cassette recorder that's attached
to the triple-plug end of the cassette interface
cable. Select CS1 (cassette unit 1) from the
options list.

From this point on. the computer guides you
through the SAVE routine with on-screen
instructions. (Note that the same instructions
appear whether you select CS1 or CS2.) The
computer controls the recorder motor power. so
the tape does not start to move until you press
ENTER at the points indicated.

Screen Instructions

* REWIND CASSETTE TAPE CS1
THEN PRESS ENTER

Procedure

Rewind the tape before you press ENTER. If your
recorder does not have a tape-position counter,
rewind the tape all the way to the beginning. If
your recorder does have a position counter.
position the tape at the spot where you want to
begin recording, and press the "stop” button on
the recorder. (Write down the position for later
reference.) Then press ENTER to continue.

[-10

User's Reference Guide

General Information

* PRESS CASSETTE RECORD CS1
THEN PRESS ENTER

Press the "record” button on the recorder, and
then press ENTER on the computer. As soon as
you do, your data will begin recording on the
tape, and the screen will show this message:

* RECORDING

You may hear the sound of the encoded
information as it is being stored or read from the
tape unit. Several seconds of blank tape will be
recorded to allow for the leader on the tape.

* PRESS CASSETTE STOP CS1
THEN PRESS ENTER

When all the data has been recorded, press the
"stop” button on the recorder, and then press the
computer's ENTER key.

Once you've done this, you'll be asked:
* CHECK TAPE (Y OR NJ?

Note: The single-letter responses (¥, N, R, €tC.)
you give when saving or loading data on a
cassette tape must be upper-case characters.
Hold down the SHIFT key, and press the
appropriate letter key.

At this point you may choose to let the computer
check your lape to make sure everything was
recorded properly. We strongly recommend that
you do so to ensure the accuracy of your tape for
future use. Note: C31 vuly.

If vou decide not to check the tape, press N for
no. Remove your tape, and label it for later
reference.

[f you want to check the tape, press Y for yes.
Again, the computer guides you with the
following messages:

* REWIND CASSETTE TAPE C51
THEN PRESS ENTER

Rewind the tape (before pressing ENTER) to the
point where you began recording your data. If
you stored your data at the beginning of the
tape, simply rewind the tape to the beginning. If,
however, vou began at a point other than the
beginning of the tape, rewind the tape to that
position, and press the “stop” button on the
recorder. Then press ENTER.

* PRESS CASSETTE PLAY C51
THEN PRESS ENTER

Press the "play’ button on the recorder, and
then press ENTER. The computer will compare
the data in its memory to the data on the tape.
While your tape is being checked by the
computer, you'll see this message:

* CHECKING

If there are no errors, the following messages
are displayed on the screen:
* DATA OK

PRESS CASSETTE STOP CS1

THEN PRESS ENTER

You can now remove your data tape and label it
for future use.

If, however. the data were not recorded properly,
you'll receive one of two error messages:

Error Message
* ERROR — NO DATA FOUND

Meaning

Your data was not recorded, or it did not play
back.

PRESS R TO RECORD CS1
PRESS C TO CHECK
PRESS E TO EXIT

Error Message
* ERROR IN DATA DETECTED

Meaning
Some part of your data did not record properly.

PRESS R TO RECORD C51
PRESS C TO CHECK
PRESS E TO EXIT

Before you go further. you may want to recheck
these items:

B Is the recorder at a proper distance from
your television set {two feet or more)? @ Is the
recorder attached properly to the computer?

W [s the cassette tape in good condition? (If in
doubt, try another tape.) B Are the cassette
recorder volume and tone adjusted correctly?
Was the volume too high or too low? B Does the
cassette tape head need cleaning? B s the
system located on a metal surface?

User's Reference Guide

General Information

When you have checked these. you can choose
one of these three options:

B Press R to record your data again, using the
same instructions for RECORD that are
discussed above.

W Press € to instruct the computer to check
your data again.

W Press E tn "exit” and the following message
appears:

* PRESS CASSETTE STOP CS!1
THEN PRESS ENTER

The "exit” key takes you back to the beginning
of the "Save” option of the module. Thus, when
you press ENTER, you see the "Save Data”
screen and can try to store your data again. Just
follow the instructions as they appear on the
screen.,

To Load Data When Using a Module

The next time you want to use the information
stored on the tape, you'll need to "load” your
data — that is, read the data you saved on tape
into the metnory system of the computer * First,
connect your cassette recorder(s) to your
computer. Then insert into the computer the
module from which you saved the information.
When you're ready to "load,” select the "LOAD
DATA" option of the module. When the
computer asks, press the 1 key to indicate the
information is being read from a cassette. Then
press the 1 key again to select cassette unit
CS1. Remember CS1 is used for loading data.

From this point, the computer prints
instructions on the screen for you to follow.

Screen Instructions

* REWIND CASSETTE TAPE CS1
THEN PRESS ENTER

Procedures

Rewind the tape before you press ENTER.
Position your tape at the point from which you
want to read the data into the computer (at the
beginning if your recorder does not have a
position counter). Then press ENTER.

*Due to differences in tape cassette design, a tape
recorded by one model of recorder may not be
readable by another model of recorder.

Screen Instructions

* PRESS CASSETTE PLAY CS1
THEN PRESS ENTER

Procedures

Press the "play” button on the recorder and the
ENTER key on the computer. The information is
read from the tape and entered into the
computer's memory. While the computer is
reading the tape, the following message appears
on the screen:

* READING

It takes some time to read in the data,
depending on the amount of information stored.
When the computer finishes reading the data, it
tells you whether or not it read the data
properly. If the data was read correctly, you'll
see the following messages on the screen:

* DATA OK
* PRESS CASSETTE STOP CSt1
THEN PRESS ENTER

You're now ready to begin working with the
module.

If, however, the data has not been entered
properly into the computer's memory, you'll see
one of several "error” messages. Follow the
directions on the screen to try to load your data
again.

If you still have difficulty, you'll want to make

SUre:

N you are loading the correct tape

B the tape is positioned at the correct starting
place for the data you are loading

B the tape has not been damaged
or accidentally erased

B the recorder is a proper distance from your
television set (two feet or more)

B the recorder is attached properly to the
computer

B the cassette recorder volume is adjusted
correctly

® the system is not located on a metal surface

B the tape was recorded with your cassette unit or
an identical model
B the cassette tape head is clean

W you are using cassette unit 1

[-12

User's Reference Guide

BASIC
Reference
Section

ser's Reference Guide

1

BASIC Reference Section

Introduction

This section of your User's Reference Guide provides a complete
explanation of all of the commands and statements that are a
part of the TI BASIC language built right into your computer.
As mentioned earlier, BASIC is a computer language

designed to be casy for beginners to use, yet powerful enough to
allow you to use your computer for a whole host of applications.
There arc three different paths available to help you learn

TI BASIC.

Ifyou're a beginner — and have never had any experience with
programming — the best place to begin is with the Beginner's
BASIC book included with your computer. The book is

intended to be an enjoyable. quick, self-paced first experience with
programming in T1 BASIC. Once you've become familiar with
BASIC, this reference guide will provide the in-depth, ready
reference to terms and information you'll want at your fingertips as
you enjoy the experience of programming.

If you've had some programming experience — and just want to get
familiar with T1 BASIC and how it works on your computer —
we've provided a series of applications programs at the end of

this manual. These programs start out at a very simple level and
progressively become more complex. Exploring these programs will
illustrate for you the use of many of the statements in T1 BASIC.
This reference manual provides in-depth information when you
need it.

For those of you with some programming experience who may not
have prograimned in BASIC or who want to "brush up” as you
begin using your computer, we recommend that you begin

with Herbert Peckham’s excellent book, Programming BASIC with
the TI Home Cornpuier, which provides a rapid, higher-level
learning experience in BASIC. 1t is available at most popular
bookstores.

For the knowledgeable — once you've gained proficiency in
programming — this guide will serve as your primary reference on
TI BASIC statements and commands, providing those details that
need refreshing from time to time. TI BASIC conforms to the
American National Standard for Minimal BASIC. Additional
features in T1 BASIC. such as color graphics, sound, and many
others, are also described in this manual. If you are an
experienced BASIC programmer, you should have little trouble
jumping right into T1 BASIC and using it.

I1-2

User's Reference Guide

BASIC Reference Section

How This Section Is Organized

This reference guide is organized with usability as the key goal. and
is divided into the following functional groups.

1. General Information 7. Built-In String Functions
2. Commands 8. User-Defined Functions
3. General Program Statements 9. Arrays

4. Input-Output Statements 10. Subroutines

5. Color Graphics and Sound 11. File Processing

6. Built-In Numeric Functions

A glossary of often-used terms 1s found in the back of this manual.

Notational Conventions

At the beginning of the discussion for each T1 BASIC command or
statement, a line appears which shows the general format for
cntering the command or statement. Certain notational conventions
have been used in these format lines. These conventions are
discussed here to help you understand how they are used.

{ } — The braces indicate that you have a choice of what to use. You
may use only one of the items given within the braces.

[]— The brackets indicate that the item within is optional. You may
use it if you wish, but it 1s not required.

. — The ellipsis indicates that the preceding item may be
repeated as many times as you desire.

italics — Words appearing in italics are a general description of the
item or items that need to appear there. When words are printed in
italics, you need to enter your own choice in place of the italicized
words when you enter the statement or command.

Examples

For each statement or command in this manual, program
examples are shown at the right. Each line you must enter is
indicated by the prompt character (=) to the left of the line, just
as it appears on the screen. Lines which the computer places on
the screen do not show the prompt character.

The examples shown in this book are printed in upper-case
(large capital) letters. If you want to reproduce the examples
exactly as you see them here. press down the ALPHA LOCK key.
In most cases the computer accepts either upper-case or lower:
case letters. However, when you LIST a program, the screen
displays all reserved words, variable names, and subprogram
names as large capitals.

User's Reference Guide

I1-3

General Information

Introduction

Once your computer is set up, it is a simple process to begin using
T1 BASIC. When you turn on your computer, the master computer
title sereen appears. Press any key on the keyboard to get the
master selection list to be displayed. When the master selection list
appears, press the 1 key to select T1 BASIC. The sereen is now
blank except for the words "TT BASIC READY" and a prompt
character { >) followed by a tlashing cursor {H}. Whenever the
cursor i1s on the screen, the computer is waiting for you to enter
something. The prompt character marks the beginning of each line
you type.

Each line of the screen can display up to 28 characters. Each
statement or command may be up to feur sercen lines in length.
When you have completely filied une screen line, the cursor
automatically moves down to the next line as you continue typing.
When you have completely filled four lines, the computer will
accept more characters, but the cursor will remain in the same
position. Each character you enter will replace the last character of
the line.

All of the keys discussed in the Special Keys section may be used in
editing program lines before you press the ENTER key. To change
anything in a program line after you have pressed ENTER. you can
retype the entire program line making the desired corrections as
you type in the line again or you can enter Edit Maode. Note that
whenever you do any editing on a program, all open files are

closed (see OPEN statement). and all variables hecome

undefined.

The remainder of this section gives information which applies to
many commands and statements in T1 BASIC.

Examples:

TI BASIC READY

by |

>NEW

>10 Aa=2
>RUN

*k DONE *=*

>PRINT A
P4

»>20 B=3
>PRINT A
0

I1-4

User's Reference Guide

Special Keys

Several keys have special functions in T1 BASIC. These keys are
discussed here.

ENTER — When you press the ENTER key. the computer accepts the
program line you have just finished typing. Remember that you may
use up to four screen lines for each program line before you press
ENTER.

FCTN = (QUIL}) — When you press QUIY, the computer leaves T1I
BASIC and returns to the master computer title screen. When
the computer leaves T1 BASIC, the program and all data stored
in memory is erased. Note that this key does not close open files
(see OPEN statement). Thus, it is preferable to use the BYE
command to leave BASIC.

FCTN 1 (UP) — The Up-Arrow key works exactly like the ENTER key,
except in Edit Mode.

FCTN ! (DOWN) — The Down-Arrow key works exactly like the
ENTER key, except in Edit Mode.

FETN = (LEFT)— The Left-Arrow (backspace) key moves the
cursor one position to the left every time it is pressed. When the
cursor moves over a character it does not delete or change it in any
way. If the cursor reaches the beginning of the line, pressing the
Left-Arrow key has no effect.

FeTN — {RIGHT) — The Right-Arrow {forwardspace) key moves
the cursor one position to the right each time it 18 pressed. Using
this key allows you to move the cursor over a character without
deleting or changing it in any way. 1f the cursor reaches the end of
the line (4 screen lines). pressing the Right-Arrow key has no effect.

FCTN 2 (INS) — The Insert key is used to insert characters in the
middle of a program line. To insert characters, position the cursor
(using FCTN < or FCTHN -) over the character immediately to
the right of the place where you wish to insert characters, then
press the Insert key. After you have pressed the Insert key, each
time you press a character, the cursor and every character of the
program line that is not to the left of the cursor is moved one
position to the right. The character corresponding to the key you
pressed is then inserted in the blank position left by the shifting of
the cursor and other characters. Note that characters shifted off the
end of the program line are deleted from the line. When you have
finished inserting characters. press any other special key listed
above, except QUIT.

User's Reference Guide

11-5

Special Keys

FCTN 1 (DEL) — The Delete key is used to delete characters from
the program line. To delete characters, position the cursor {using
FCTN ~ or FCTN —) over the character you wish to delete, then
press the Delete key. When you press the Delete key, the character
under the cursor is deleted and all characters of the program line to
the right of the cursor are moved one position to the left. The

cursor does not move. A blank space is used to fill the position at

the right end of the program line left by the shifting of the characters.

FCTH 4 (CLEAR) — The Clear or Break key has two functions,
depending on when you use it.

B When this key is pressed while a program is running, a
breakpoint will be taken at the next program line to be
executed. This key allows you to temporarily stop a program
while it is running. Note that you must continue to hold the Break
key until the program stops running. When you stop running a
program using the Break key, the message "BREAKPOINT AT
hne-number” is displayed. The program line designated by the
line-number has not been performed. You can start the program
running again where you stopped by entering the CONTINUE
command.

B When the Clear key 1s pressed while typing in a program ling, the
line scrolls up on the screen and 1s not entered. This key has
additional functions in Edit Mode and in Number Mode.

FCTN 3 (FERASE) — The Erase key erases the entire program

line which you are typing. The line is not entered. This key
works differently in Edit Mode and Number Mode.

SPACE BAR The Space Bar moves the cursor one position to the
right each time it 1s pressed. [f you move the cursor over a
character using the Space Bar, that character is replaced by the
space character.

IlI-6

User's Reference Guide

Blank Spaces

In general, a blank space can occur almost anywhere in a program
without affecting the execution of the program. However, any extra
blank spaces you put in that are not required will be deleted when
the program line is displayed by the EDIT, NUM., or LIST
command. There are some places where blank spaces must not
appear, specifically:

(1) within a line number

{2) within a reserved word
{3} within a numeric constant
(4) within a variable name

The following are some examples of incorrect use of blank spaces.
The correct line appears in the column at the right.

(1)1 00 PRINT "HELLO"

(2} 110 PR INT "HOW ARE YOU?®
(3} 120LET A=1 00

{4) 130 LET CO ST =24.95

All reserved words in a program should be immediately preceded
and followed by one of the fallowing:

W 3 blank space

B an arithmetic operator (+ —*/ /)

M the string opcrator (8)

W a special character used in a particular statement format
(= =>(.4)

B cnd of line (ENTER key)

Examples:

>100 PRINT "HELLO"

>110 PRINT "HOW ARE YQOU?"
>120 LET A=100

>130

LET COST=24.95

User's Reference Guide

11-7

Line Numbers

Each program is comprised of a sequence of BASIC language

program lines ordered by line number. The line number serves as a

label for the program line. Each line in the program begins with a
line number which must be an integer between 1 and 32767,
inclusive. Leading zeroes may be used but are ignored by the
computer. For example: 033 and 33 will be read as 33. You need

not enter lines in sequential order; they will be automatically placed

that way by the computer.

When you run the program, the program lines are performed in

ascending sequential order until:

(1) & ranch mmstuction is perfored (see "General Frogram
Statemenis”)

{2) an error occurs which causes the program to stop running (see
"Error Messages”)

(3) the user interrupts the running of the program with a BREAK
command or by using the Break key (CLEAR)

(4) a STOPF statement or END statement is performed

{5) the statement with the largest line number is performed

If you enter a program line with a line number less than 1 or
greater than 32767, the message "BAD LINE NUMBER" will be
displayed and the line will not be entered into memory.

Examples:

>NEW
>100 A=27.9
>110 B=31.8

>120 PRINT A;B
>130 END

>RUN
27.9 31.8

*% DONE %

>0 A=2
* BAD LINE NUMBER
>33000 C=4

* BAD LINE NUMBER

[1-8

User’s Reference Guide

Numeric Constants

Numeric constants must be either positive or negative real
numbers. You may enter numeric constants with any number of
digits. Values are maintained internally in seven radix-100 digits.
This means that numbers will have 13 or 14 decimal digits
depending on the value of the number.

Scientific Notation

Very large or very small numbers are easily handled using scientific
notation. A number in scientific notation is expressed as a base
number (mantissa) times ten raised to some power (exponent).

Number e Mantissa x 1 OI‘fxnnnPnt

To enter a number using scientific notation:

First, enter the mantissa (be sure to enter a minus sign first if 1t's
negative).

Eater the letter "E” (must be an upper-case E).

Enter the power of 10 (if it is negative, enter the minus sign before
you enter the exponent).

The following are some examples of how numbers in scientific
notation are entered.

Number Entered as

3264 x 10° 3.264E4

—98.77 x 10 —98.77E21 or —9.877E22
5691 x 10-° 569E-5

247 x 10V —247E -17

Numeric constants are defined in the range of
—9.9900009999999E127 to —1E-128, 0, and 1E-128 to
9.9990999999999F127.

Underflow — If an entered or computed number, when rounded, is
greater than — 1E-128 and less than 1E-128, then an underflow
occurs. When an underflow occurs. the computer replaces the value
of the number with a zero and the program continues running. No
Warning or error 1$ given.

Overflow — If a number is entered or computed whose value when
rounded is greater than 9.9999999999999E127 or less than
—0.9999999G990G09E 127. an overflow occurs. When an overflow
occurs, the constant is replaced by the computer's limit, a warning
1s given with the message "NUMBER TOO BIG,” and the program
continues running. T he computer's limit 18
—9.999900000009G0F 127 or 9.999099099009099E 127 as
appropriate. Note that "**" is printed if the exponent is greater
than 99

Examples:

>PRINT 1.2
1.¢

*PRINT -3
-3

>PRINT ©
0

>PRINT 3.264E4
52640

>PRINT =98,77E21
-9.877E+22

PPRINT O
0

>PRINT -9E-130
9

PPRINT 9E-142
0

>PRINT 97E136

* WARNING:
NUMBER TOD BIG
9.99999E+x %

>PRINT -108E144
* WARNING:

NUMBER TOD BIG
=9.99999E+%¥*

User's Reference Guide

String Constants

A string constant is a string of characters (including letters,
numbers, spaces. symbols. etc.) enclosed in quotes. Spaces within
string constants are not ignored and are counted as characters in
the string. All characters on the keyboard that can be displayed
may he used in a string constant. A string canstant is limited by the
length of the input line (112 characters or four lines on the screen).

When a PRINT or DISPLAY statement 1s performed, the
surrounding quote marks are not displayed. If you wish to have
words or phrases within a string printed with surrounding quote
marks, simply enter a pair of adjacent quote marks {double
quotes) on either side of the particular word or phrase when you
type it

Examples:

>NEW

>100 PRINT "HL!"

110 PRINT "THIS IS A STRING
CONSTANT."
>120 PRINT ™ALL CHARACTERS (4
-«{ @,) MAY BE USED."

>130 END

>RUN

HI!

TH1S IS A STRING CONSTANT.
ALL CHARACTERS {+-%x/ a,} MAY
BE USED.

*% DONE *w

>NEW

>100 PRINT '"TO PRINT ""QUOTE

MARKS""™ YOU MUST WSE DOUBLE

QuOTES."

>110 PRINT

>120 PRINT "TOM SAID, “""HI, M
ARY!!!IIII

>130 ENP

>RUN

TD PRINT "QUOTE MARKS" YOU M
UST USE DOUBLE QUOTES.

TOM SAID, "HI, MARY!"

k% DONE *+

110

User's Reference Guide

Variables

In BASIC all variables are given a name. Each variable name may
be one or more characters in length but must begin with a letter, an
at-sign ((@), a left-bracket ([), a right-bracket (1), a back slash {\),

or a line (). The only characters allowed in a variable name are
letters, numhers, the at-sign (), and the line (_). One exception

is the dollar-sign ($). The last character in a string variable name
must be a dollar-sign ($) and this is the only place in a variable
name that it may be used. Variable names are restricted to fifteen
characters including the dollar-sign for string variable names.

Array names follow the same rules as simple variable names. (See
the section on Arrays for more information.) In a single

program, the same name cannot be used both as a simple variable
and as an array name, nor can two arrays with different dimensions
have the same name. For example, Z and Z(3) cannot both be used
as names in the same program. nor can X(3,4) and X(2,1,3).
However, there is no relationship between a numeric variable name
and a string variable name which agree except for the dollar sign
(X and X§ may both be used in the same program).

Numeric Varrable Names

Valid: X, A9, ALPHA, BASE __PAY, V(3), T(X,3),
TABLE (X XX7Y/2)
Invalid: X§, X/8, 3Y

String Variable Names

Valid: 5§, YZ25, NAMES, Q58%(3, X)
Invalid: $$3, X9, 4Z%

If you enter a variable name with more than fifteen characters, the
message "BAD NAME" s displayed and the line is not entered into
memory. Reserved words are not allowed as variable names, but
way be used as pait of a variable nawe. For examnple, LIST is

not allowed as a variable name but LISTS$ is accepted.

At any instant while a program is running, every variahle has a
single value. When a program begins running, the value associated
with each numeric variable is set to zero and the value associated
with each string variable is set to null (a string with a length of zero
characters). When a program is running, values are assigned to
variables when LET statements, READ statements, FOR-TO-
STEP statements, or INPUT statements are performed. The
length of the character string value associated with a string
variable may vary from a length of zero to a limit of 255
characters while a program is running.

Examples:

>110 ABCLOLCFGHIJKLMNDOPQ=3

* BAD NAME

User's Reference Guide

I1-11

Numeric Expressions

Numeric expressions are constructed from numeric vanabiles,
numeric constants, and function references using arithmetic
operators { + —*/ /A). All functions referenced in an expression must
be either functions supplied in TI BASIC (see sections on Built-In
Functions) or defined by a DEF statement. The two kinds of
arithmetic operators {prefix and infix) are discussed below.

The prefix arithmetic operators are plus (+) and minus (—) and are
used to indicate the sign (positive or negative) of constants and
variables. The plus sign indicates the number following the prefix
operator (+) should be multiplied by +1, and the mnus sign
indicates the number following the prefix operator (—) should be
multiplied by —1. Note that if no prefix operator is present, the
number is treated as if the prefix operator were plus. Some
examples of prefix operators with constants and variables are:

10 —6 +3

+A W

The infix arithmetic operators are used for calculations and include:
addition (+), subtraction (—), multiplication (*), division [/}, and
exponentiation (A). An infix operator must appear between each
numeric constant and/or variable in a numeric expression. Note
that multiplication cannot be implied by simply placing variables
side by side or by using parentheses. You must use the
multiplication operator (*).

Infix and prefix operators may be entered side by cide within a
numeric expression. The operators are evaluated in the normal
way.

Examples:

>NEW

>100
>110
>12Q
>130
>140
>150
>160
>RUN

12

20

*% DONE ¥

>PRINT 3+-1

2

>PRINT 2#%-3

-6

>PRINT 6/-3

-2

6
4
20

A
B
C

p=2

PRINT A+B/2
PRINT C-Dx3+6

END

I[1-12

User's Reference Guide

Numeric Expressions

In evaluating numeric expressions, T1 BASIC uses the standard
rules for mathematical hierarchy. These rules are outlined here.

1. All expressions within parentheses are evaluated first
according to the hierarchical rules.

2. Exponentiation is performed next in order from left
to right.

3. Prefix plus and minus are performed.

4. Multiplications and divisions are then completed.

5. Additions and subtractions are then completed.

Note that 0 A0 is defined to be 1 as in ordinary mathematical
usage.

In the evaluation of a numeric expression if an underflow occurs,
the value is simply replaced by zero and the program continues
running. If an overflow occurs in the evaluation of a numeric
expression, the value is replaced by the computer’s limit, a
warning condition 1s indicated by the message "WARNING:
NUMBER TOO BIG." and the program continues running.

When evaluation of a numeric expression results in division by zero,
the value 1s replaced by the computer's limit with the same sign as
the numerator, the message "WARNING: NUMBER TOO BIG" is
displayed, and the program continues running. If the evaluation of
the operation of exponentiation results in zero being raised to a
negative power, the value is replaced by the positive value of the
computer’s limit, the message "WARNING: NUMBER TOO BIG"
is displayed, and the program continues runmng. If the evaluation
of the operation of exponentiation results in a negative number
being raised to a non-integral power, the message "BAD VALUE" is
displayed, and the program stops running.

Examples:

>NEW

>100 A=2

>110 B=3

>120 =4

>130 PRINT A% (B+2)

>140 PRINT BAA-4
2150 PRINT =CAARZ(-CIAA
>160 PRINT 10-B*L{/é
>170 END
>RUN
1o
5.
-16 16
g

**x DONE #*%

PPRINT O~0Q
1

>NEW

>100 PRENT 1E-200
>110 PRINT 24+1E-139
>120 PRINT 1E171
>130 PRINT (1E6O%1E76)/TESD
>14¢ END
>RUN
0
24

* WARNING:
NUMBER TOO BIG IN 120
G.IFIFPE+A*

* WARNING:
NUMBER TOO BIG IN 130
1.E+78

*% DONE %+

>NEW

>100 PRINT -22/0
>110 PRINT 0a-2
»120 PRINT (=-3)a1.2
>130 END

>RUN

* WARNING:
NUMBER TOOD BIG IN 100
—G.99990E+x%

* WARNING:
NUMBER TOO BIG IN 110
F.9999FE+*x

* BAD VALUE IN 7120

User's Reference Guide

[1-13

Relational Expressions

Relational expressions are normally used in the IF-THEN-ELSE
statement but may be used anywhere numeric expressions are
allowed. When you use relational expressions within a numeric
expression, a numeric value of —1 is given if the relation 1s true
and a numeric value of 0 is given if the relation is false.

Relational operations are performed from left to right before string
concatenation and after all arithmetic operations within the
expression are completed. 1o perform string concatenation betore
relational operations and/or to perform relational operations before
arithmetic operations, you must use parentheses. Valid relational
operators are:

B Equal to (=)
B Less than (<)
B Greater than (=)

B Not equal to (<7 =)
B Less than or equal to (<< =)
@ Greater than or equal to (= =)

An explanation of how string comparisons are performed to give
you a true or false result is discussed 1n the TF-THEN-ELSE
explanation. Remember that the result you obtain from the
evaluation of a relational operator is always a number. If you try
to use the result as a string, you will get an error.

Examples:

>NEW

>100 A=2<5
*110 B-3<=2
>120 PRINT A;B
>130 END

>RUN

-1 0

*% DONE *+*

>NEW

>100 AS="HI"
>110 p$=" THERE!"
>120 PRINT (ASEBSI="HI'!"
>130 END
>RUN
(]

*% DONE *%

»120 PRINT (A$EBS)>"HI"
>RUN
-1

*% DONE **

>120 PRINT (A3>B$) x4
PRUN
-4

xe DONE **

>NEW

>100 A=2<4#%3
>110 B=A=0
>120 PRINT A;B
>130 END
>RUN

=1 0

**% DONE x*

[I-14

User's Reference Guide

String Expressions

String expressions are constructed from string variables, string
constants, and function references using the operation for
concatenation {&). The operation of concatenation allows you to
combine strings together. All functions referenced in a string
expression must be either functions supplied in TI BASIC (see
Built-In String Functions) or defined by a DEF statement and
must have a string value. If evaluation of a string expression
results in a value which exceeds the maximum string length of
255 characters, the string is truncated on the right, and the
program continues running. No warning is given.

Note that all characters included in a stiing expression are
always displayed on the screen exactly as you enter them.

Examples:

>NEW

>100 AS="HI"

>110 B$="HELLO THERE!"
>120 C$="HDW ARE YOU?"
>130 MSG$=ASESEGS(BS,6,7)
>140 PRINT MSG$R™ "B(CS
>150 END

>RUN

HI THERE! HOW ARE vOu?

*% DONE *+%

User's Reference Guide

115

Reserved Words

Reserved words are words that may not be used as variable names
in TI BASIC. Note that only the exact word shown is reserved. You
may use reserved words as part of a variable name (for example,
ALEN and LENGTH are allowed). The following is a complete list
of all reserved words in T1 BASIC:

ABS
APPEND
ASC
ATN
BASE
BREAK
BYE
CALL
CHR$
CLOSE
CON

CONTINUE

cos
DATA
DEF
DELETE
DIM
DISPLAY
EDIT
ELSE
END
EOF
EXP
FIXED
FOR

GO
GOSUB

GOTO

IF

INPUT

INT
INTERNAL
LEN

LET

LIST

LOG

NEW
NEXT
NUM
NUMBER
OLD

ON

OPEN
OPTION
OUTPUT
PERMANENT
POS

PRINT
RANDOMIZE
READ

REC
RELATIVE
REM

RES

RESEQUENCE
RESTORE
RETURN
RND

RUN
SAVE
SEG$
SEQUENTIAL
SGN

SIN

SOR
STEP
STOP
STRS
SUB

TAB

TAN

THEN

TO
TRACE
UNBREAK
UNTRACE
UPDATE
VAL
VARIABLE

II-16

User's Reference Guide

Statements Used as Commands

Many statements in TI BASIC can be entered as commands with
no line number. When a statement is entered as a command, it is
executed immediately in the normal way (unless there is an error).

The following statements may be entered as commands.

CALL
CLOSE
DIMension
DISPLAY
END

LET (assignment)
OPEN

PRINT
RANDOMIZE
REMark
READ
RESTORE
STOP

User's Reference Guide

1117

Commands Used as Statements

Some commands in TI BASIC may be entered as part of a
program. Generally, the commands work the same way when

they are used as a statement. The following commands may be used
in a program.

BREAK
UNBREAK
TRACE
UNTRACE
DELETE

1118 Users Reference Guide

Commands

Introduction

Whenever the prompt and flashing cursor (>M) appear at the
bottom of your screen, your computer is in Command (Immediate)
Mode. When your computer is in Command Mode, you may enter
any of the commands discussed in this section. Commands may be
typed in and entered without being preceded by a line number.
When a command is entered, your computer performs the required
task immediately. Many statements may also be entered as
commands.

Some of the commande discussed here may be entered as
statements. If the command may be entered as a statement, it will
be noted in the discussion.

User's Reference Guide

11-19

NEW

NEW

The NEW command erases the program that is currently stored in
memory. Entering the NEW command cancels the effect of the
BREAK command and the TRACE command. The NEW
command also closes any open files (see QOPEN statement) and
releases all space that had been allocated for special characters.
In addition, the NEW command erases all variable values and
the table in which variable names are stored. Alter the NEW
command is performed. the screen is cleared and the message
"“TI BASIC READY" is displayed on the screen. The prompt and
flushing cursor (>~ ®) indicate that you may enter another
command or a program line.

Examples:

TI BASIC READY

bd |

11-20

User’s Reference Guide

LIST

LIST [fine-list]
“"device-name'|:line-list]

When the LIST command is entered. the program lines specified by
the line-list are displayed. If a device-name is entered, then the
specified program lines are printed on the specified device. Device-
names for possible future accessory devices will be given in their
respective manuals. 1f no device-name is entered, the specified lines
are displayed on the screen.

If the LIST command is entered with no fine-list, then the entire
program is displayed. The program lines are always listed in
ascending order. Note that all unnecessary blank spaces that were
present when you entered the program line were deleted when the
computer accepted the line. Notice that when you list the lines,
unnecessary blank spaces have been deleted.

If the line-fist is entered. it may consist of a single number, a single
number preceded by a hyphen (for example: -10), a single number
followed by a hyphen (for example: 10-), or a hyphenated range of
line numbers. If the line-lisf is:

B A single number — only the program line for the line number
specified is displayed on the screen.

B A single number preceded by a hyphen — all program lines with
line numbers less than or equal to the line number specified are
digplayed.

B A single number followed by a hyphen — all program lines with
line numbers greater than or equal to the line number specified
are displayed.

® A hyphenated range of line numbers — all program lines with line
numbers not less than the first line number in the range and not
greater than the second line number are displayed.

Examples:

>NEW

>100 A=279.3
>120 PRINT A;B
>110 B=-456.8
>130 END
>LIST
100 A=279.3
110 B=-456.8
120 PRINT A;B
130 END

>LIST 110
110 B=-456.8

>L1sT =110
100 A=279.3
110 B=-456.8

>LIST 120~
120 PRINT A;B
130 END

>LIST 90-120
100 A=279.3
110 B=-456.8
120 PRINT A;B

User's Reference Guide

I1-21

LIST

If there is a program in memory but there are no program lines
within the range specified by the /ine-Iist, then a program line is
displayed according to the following rules. If the /ine-Iist specifies

W Line numbers greater than any in the program — the highest
numbered program line 1s displayed.

B Line numbers less than any in the program — the lowest
numbered program line is displayed.

B Line numbers between lines in the program — the next higher
numbered line is displayed.

If you enter a LIST comunand and specify a line number which is

equal to zero or greater than 32767, the message "BAD LINE
NUMBER" is displayed.

If you specify a line number which is not an integer, the message
"INCORRECT STATEMENT" is displayed.

If no program is in memory when you enter a LIST command, the

message ‘CAN'T DO THAT" is displayed.

When program lines are being displayed after the LIST command
has been entered, you can stop the listing by pressing the Break key
(CLEAR).

Here is a quick summary of the lines listed when specified in the
line-list.

Command Lines Displayed

LIST All program lines

LIST x Frogram line number x

LIST x-y Program lines between x and y, inclusive
LIST x- Program lines greater than or equal to x
LIST -y Program lines less than or equal to y

LIST may also be used to direct output to an accessory device.
For example,

LIST "TP”
causes your program to be printed, if the TI Solid State Thermal
Printer is attached, and

LIST "R5232/1":100-200
outputs program lines 100 to 200 to the T1 RS232 Interface.
Note that the name of the device must be enclosed in quotation
marks. For more information refer to the owner’s manual that
comes with the accessory device.

Examples:

>LIST 150-
130 END

>LIST =90
100 A=279.3

>LIST 105
110 B=-456.8

*LIST O
* BAD LINE NUMBER
*LIST 33961

* BAD LTNF MNUMRFR

>LIST 32.7

* INCQRRECT STATEMENT

PNEW
>LIST

+ CAN'T DO THAT

11-22

User's Reference Guide

RUN

RUN lline-number!

Entering the RUN command causes the program stored in memory
to begin running. Before the program starts running, the values of
all numeric variables are set to zero, the values of all string
variables are set w uull (a siriug of cero characters), and any spacc
previously allocated for special graphics characters is released.

If no Iine-number is specified when the RUUN command is entered.
then the program starts running at the lowest numbered line in the
program.

If a line-number is specified when the RUN command 1s entered.
then the program starts running at the specified program line. Note
in this example that since the program begins running at line 110,
the value of A remains zero.

If you specify a /ine-number which is not in the program, the
message "BAD LINE NUMBER" is displayed.

If you enter a RUN command when there is no program in memory,

the message "CAN'T DO THAT" is displayed.

Examples:

PNEW
>100 A=-16
>110 B=25
>120 PRINT A;B
>130 END

>RUN

-16 25

*% DONE =**
*RUN 110

0 25

x DONE =%

>RUN 115

* BAD LINE NUMBER

>NEW
>RUN

* CAN'T DD THAT

User's Reference Guide

11-23

BYE

BYE Examples:

When you are finished working and are ready to leave BASIC,

simply enter the BYE command. We recommend that you always >NEW

use the BYE command (instead of QUIT) when you w1§h to leave >100 LET XS="HELLD, GENIUS!®
BASIC. When the BYE command is cntered, the first job your »110 PRINT X§

computer performs is closing all open files (see OPEN >120 END

>RUN

statement). Then, the program in memory and all variable values HELLO, GENIUS!

arc crascd. Finally, the computer is reset so that it is ready to go

again when you want to return to BASIC. After the BYE ** DONE =
command is performed, the master computer title screen SBYE
rcappears.

~-master computer title
screen appears

11-24 Users Reference Guide

NUMBER

NUMBER o .
NUM binitial-linell . tncrementl

When the NUMBER command is entered, your comnpute:
automatically generates line numbers for you. Your computer is in
Number Mode when it is generating line numbers. In Number
Mode each line entered in response 1o a generated line number is
added to the program.

The first line number displayed after entering the NUMBER
command is the specified initral-line. Succeeding line numbers are
generated using the specified increment. To terminate the automatic
generation of line numbers and leave Number Mode, press ENTER
immediately after the generated line number is displayed. The
empty line is not added to the program.

If no initial-line and no fncrement are specified. then 100 1s used as
the initial-fine and 10 is used as the increment.

If you specify only an initial-line, then 10 is used as the increment.

If you specify just an increment, then 100 i1s used as the initial-line.
Note the comma before the five in the example. Remember, if you
wish to specify only an increment, the comma must be typed before
the increment.

Examples:

>NEW
>NUMBER 10,5

>»10 €=38.2
>15 D=16.7
>20 PRINT C;D
>25 END

>30 ENTER
>LIST

10 =38.2
15 b=16.7

20 PRINT C;B
25 END

>NEW

>NUM

»100 BS="HELLO!"
>116 PRINT B%
>120 END

>130 ENTER

>NEW

>NUMBER 50
>50 CE="HI!"
>60 PRINT (%
>70 END

>80 ENTER

>NEW

>NUM ,5

>100 1=99.7
>105 PRINT I
>110 END
>115 ENTER

User’s Reference Guide

I1-25

NUMBER

When you are in Number Mode, if a line number generated is
already a line in the program. then the existing program line is
displayed with the line number. Note that when an existing
program line is displayed in Number Mode, the prompt character
{>) 1s not shown to the left of the line number. This indicates the

line 1s an existing program line and you may choose to edit the line.

For information on editing, see the section below. If you do not
want to change the existing line, simply press ENTER when the line
1s displayed and it will not be changed. After you press ENTER, the
next line number is generated.

[n Number Mode, if you enter a program line and an error occurs,
the appropriate error message is displayed as usual and then the
same line number is displaycd again. Retype the line correctly and
then enter it again. If a line number would be generated in Number

Mode which is greater than 32767, the computer leaves Number
Mode.

Editing in Number Mode

Whether you are cutering new lines or changing existing program
lines while in Number Mode, all of the special editing keys may be
used. Since some of the keys work differently in Number Mode
than in Counnand Mude, the keys and how they work in Number
Mode are discussed here.

ENTER — This key has different functions depending on the
situation. The functions and situations are described below.

® If you press ENTER immediately after a line number is generated,
then the computer leaves Number Mode.

B If you type in a statement after the line number is generated and
then press ENTER, the new line is added to the program. Then the
next line number is generated.

B If an existing program line is displayed and you press ENTER
immediately after it 1s displayed, the line remains the same in the
program. Then the next line number is generated.

B If an existing program line is displayed and you erase the entire
text of the line (leaving only the line number on the screen) and
then press ENTER, the computer leaves Number Mode. The
program line is not removed from the program.

B If you edit a line after it is displayed as an existing program line
and text still remains after the line number and then press ENTER,
the existing program line is replaced by the edited line. Then the
next line number is generated.

Examples:

>NEW

>100

>110

>NUMB
110

A=37.1
B=49.4&
ER 110
B=49.6

>120 PRINT A;B

>130

>140

>LIST
100
110
120
130

END
ENTER

A=37.1
B=4G_ 6

PRINT A;B

END

[1-26

User's Reference Guide

NUMBER

FCTN ! (UP)— The Up-Arrow key works exactly the same as the
ENTER key in Number Mode.

FCTN ! (DOWN) — The Down-Arrow key works exactly the
same as the ENTER key in Number Mode.

FCTN - (LEFT) ~ The Left-Arrow key moves the cursor one
position to the left. When the cursor moves over a character it does
not delete or change it in any way.

FCTN - (RIGHT) — The Right-Arrow key moves the cursor one
position to the right. Using this key allows you to move the cursor
over a character without deleting or changing it in any way.

FCTN 2 (INS) The Insert key works in Number Mode just as it does
in Command Mode. See Special Keys for information.

FCTN 1 (DEL) — The Delete key works in Number Mode just as it
does in Command Mode. See Special Keys for information.

FCTN 4 (CLEAR) — If you press the Clear key at any time while in
Number Mode, the current line scrolls up on the screen and the
computer leaves Number Mode. Any changes which had been made
on the line before you pressed the Clear key are ignored. Thus, if
vou were editing an existing program line. the program line does
not change. If you were typing in a line, the line is not added to the
program.

FCTN 3 (ERASE) — The Erase key erases the entire text of the
program line being displayed. The line number is still displayed.

User’s Reference Guide

11-27

RESEQUENCE

RESEQUENCE (linstial-linell increment|
RES

When the RESEQUENCE command is entered, all lines in the
program are assigned new line numbers according to the specified
initial-iine and increment.

The new line number of the first line in the program is the specified
initial-line. Succeeding line numbers are assigned using the
specihed increment.

If no initial-fine and no increment are specified, then 100 s used as
the initial-fine and 10 i1s used as the increment.

If you specify only an initral-fine then 10 is used as the increment.

If you specify just an increment, then 100 is used as the initial-line.
Note the comma before the five in the example. Remember, if you
wish to specify only an increment, the comma must he typed
before the Increment.

All line number references in TI BASIC statements contained in
the program are changed to the new line numbers. Line numbers
which may be mentioned in the REM statement are not changed
since they are not essential to the running of the program.

Examples:

>NEW

>100 A=27.9
>110 B=34.1
>120 PRINT A;B
>130 END

>RESEQUENCE 20,5
>LIST

20 A=27.9

25 B=34.1

30 PRINT A;B

35 END

FRES
>LIST
100 A=27.9
110 B=34.1
120 PRINT A;B
130 END

>RES 50

>LIST

S0 A=27.9

40 B=34.1

70 PRINT A;B
80 END

>RES ,5

>LIST

100 A=27.9
105 B=34.1
110 PRINT A;B
115 END

ZNEW

>100 REM THE VALUE OF "A"™ WIL
L BE PRINTED IN LINE 120
>110 A=A+1
>120 PRINT A
*»130 G0 TO 110
>RESEQUENCE 10,5
>LIST
10 REM THE VALUE OF "A" WIL
L BE PRINTED IN LINE 120
15 A=pa+1
20 PRINT A
25 60 TO 15

I1-28

User's Reference Guide

RESEQUENCE

If a line number is used in a program line which is not a currently
used line number, then the hine number reference is changed to
32767. No error or warning is given.

If you enter a value for the fnitial-Jine and increment which would
give values greater than 32767 for some new line numbers, the
message 'BAD LINE NUMBER" is displayed. If this error occurs.
no line numbers in the program are changed.

If yvou enter a RESEQUENCE command while no program is in
memory, the message "CAN'T DO THAT" is displayed.

Examples:

SNEW

>100 z2=2+2
>110 PRINT 2
>»120 IF Z=50 THEN 150
»>130 GO TO0 100
>140 END
>RES 10,5
>LIST
10 Z=1+2
15 PRINT Z
20 IF 7=50 THEN 32747
25 60 1O 10
30 END

SRESEQUENCE 32600,100
» BAD LINE NUMBER

»LIST

10 z=2+2

15 PRINT Z

20 IF 2=50 THEN 32767
25 60 TO 10

30 END

>NEW
>RESEQUENCE

* CAN'T pO THAT

User's Reference Guide

1-29

BREAK

BREAK /ine-list

When the BREAK command is entered, breakpoints are sct at the
program lines listed in the /ine-/ist. Breakpoints are usually set to
help you find errors in your program. When you set a breakpoint at
a specific line using the BREAK conuuand, you tell the computer to
stop running the program before performing the statement on that
line.

The line-list is a list of line numbers where you wish to set
breakpoints. The line numbers are separated by commas (for
example: BREAK 10.23,35) Of course. you may choose to have
only one line number in the list.

Each time a line where a breakpoint is set is reached while the
program is running, the program stops running before the statement
on that line is performed. When the program stops running because
of a breakpoint, the message "BREAKPOINT AT line-number” is
displayed, and you are prompted with the flashing cursor to enter a
comnmand.

When the program stops running because of a breakpoint, you may
enter any command or any statement that can be used as a
command. There is no change in the value of the variables unless
you enter a statement that will assign a new value. Note that in
this example C still equals zero since the assignment in statement
110 has not been performed.

You can start running the program again (beginning with the line
where the breakpoint was set) by entering the CONTINUE
command . Note the value of A was changed earlier in

the example. You cannot enter the CONTINUE command atter you
have edited the program (added, deleted, or changed program
tines). This prevents errors that could result from starting a revised
program in the middle. If you enter a CONTINUE command after
you have edited the program, the message "CAN'T CONTINUE" is
displayed on the screen.

Examples:
>NEW

>100 A=26.7
>110 €=19.3
>120 PRINT A

>130 PRINT €
>140 END

>BREAK 110

>RUN
* BREAKPOINT AT 110

by |

>LIST 110
110 ¢=19.3
>PRINT A;C
26,7 0
>A=5.8

>PRINT A
5.8

>CONTINUE
5.8
19.3
*%x DONE *%
>BREAK 120
»RUN
* BREAKPOINT AT 120
>110 ENTER

>CONTINUE
* CAN'T CONTINUE

I1-30

User's Reference Guide

BREAK

When a breakpoint is taken (program stops running because of a Examples:
breakpoint), the breakpoint at that line 1s removed. Another way 5110 =193
to remove breakpoints is to use the UNBREAK command. 1f a >RUN
breakpoint is set at a program line and that line is deleted, the es.7

R . 19.3
hreakpoint is also removed. Breakpoints are removed from all
program lines when a SAVE command or a NEW command 1s *% DONE **

entered. Note that in the example the breakpoint at 110 was

remnaved when the hreakpoint was taken. while the breakpoint at
130 was removed by the UNBREAK command. >RUN

>BREAK 110,130

* BREAKPOINT AT 110
>UNBREAK

>CONTINUE
26.7
16.3

*% DONE #*x*

*RUN
26.7
19.3

A% DONE *x

Whenever a breakpoint is taken, the standard character set is >NEW

restored. Thus, any standard characters that had been redefined 5100 CALL CLEAR

by CALL CHAR will be converted back to the standard >110 CALL CHAR(42,"FFFFFFFFFF
h i h T m th -1 FFFFFF'™)

characters. Characte sdeﬁnegll the range 128 5_9 are ‘ 3120 CALL HCHAR(12,12,62,10)

unaffected. Note that when th.lS example program is run, a solid 5130 FOR I=1 70 500

bar appears on the screen until the breakpoint is taken. When >140 NEXT I

the breakpoint is taken, the bar becomes a row of asterisks (*) ;;;g ik 150

since character 42 is a standard character.

>RUN

-~s¢reen clears

--spolid black line appears
oen screen

4 Y

Rk ok kokokok

+ BREAKFOINT AT 150
| >m

PCONTINUE

wx DONE *x*

User's Reference Guide 11-31

BREAK

The BREAK command may also be used as a statement in
programs. If the BREAK command is entered as a statement with a
Ime-list, then breakpoints are set at the line numbers specified.
Breakpoints set in this manner may be removed as discussed
earlier. Remember, though, when the BREAK command is entered
as a statement with a /ine-fist, the breakpoints are set again each
time the statement is performed.

If the BREAK command is entered as a statement and no line-list is
specified, then the statement itself acts like a breakpoint. Each
tine the statement is performed, the program stops running. The
only way to keep the program from stopping at a BREAK
statement 1s to delete the line from the program. Note that a
BREAK command without a fine-/ist may only be entered as a
program line.

If you specify a line number in the line-list which is equal to zero or
greater than 32767, the message "BAD LINE NUMBER” is
displayed and the command is ignored (no breakpoints are set at
any line specified)

If you specify a line number in the /ine-list which is a valid line
number but is not a line in the program, the warning "BAD LINE
NUMBER" is displayed. Breakpoints will be set at the lines
specified which are program lines.

Examples:
*NEW
>100 B=29,7
>110 BREAK 120,140
>120 H=15.8
>130¢ PRINT B
>140 PRINT H
»>150 END
>RUN
* BREAKPOINT AT 120
>*UNBREAK
>CONTINUE
29.7
15_.8

*% DONE #=

>110 BREAK
>*RUN

* BREAKPOINT AT 110
>CONTINUE

26.7

15.8

**x DONE #%

>110 ENTER

>BREAK 120,130140
* BAD LINE NUMBER
SRUN
29.7
15.8

4 DONE #*

>110 BREAK 125,140
PRUN

* WARNING:
BAD LINE NUMBER IN 110
29.7
* BREAKPOINT AT 140

>CONTINUE
15.8

xx DONE %+

I1-32

User’s Reference Guide

UNBREAK

UNBREAK l|/ine-listl

The UNBREAK command is used to remove breakpoints from the
program lines listed in the /ine-/ist. For an explanation of
breakpoints and how they are set, see the BREAK command.

The flinc-Iist is a list of line numbers where you want to remove
breakpoints. The line numbers are separated by commas. (For
example: UNBREAK 10.23.) If you specify only one line number in

the line-fis¢, o coininas are necded.

If you enter an UNBREAK command with no Jine-fis¢, then all
breakpoints which have been set by a BREAK command or
statement are remaved. Note that the UNBREAK command has no
effect on a BREAK statement with no fine-fist. The only way to
keep the program from stopping at a BREAK statement with no
line-list is to delete the line.

The UNBREAK command may also be used as a statement in a
program. The UNBREAK statement is performed just like the
UNBREAK command. Note in the example, the UNBREAK
statement removed the breakpoint that was set at 130.

Examples:

>NEW

>100 A=26.7
>110 €=19.3
>120 PRINT A
>130 PRINT
>140 END
>BREAK 110,130
>RUN

* BREAKPOINT AT 110

>UNBREAK 130
>CONTINUE
26,7
19.3

*% DONE **

>125 BREAK
SBREAK 100,120,130

>RUN

* BREAKPOINT AT 100
>UNBREAK

>CONTINUE
26.7

* BREAKPOINT AT 125

>CONTINUE
19.3

x% DONE *+#

>BREAK 130
>125 UNBREAK 130
>RUN
26.7
19.3
% DONE **

»125 ENTER

User's Reference Guide

11-33

UNBREAK

If you specify a line number in the /ine-/ist which is equal to zero or Examples:
greater than 32767, the message "BAD LINE NUMBER" is
displayed and the command is ignored (no breakpoints are removed >BREAK 130

at any line specified).
>UNBREAK 130,110150

* BAD LINE NUMBER

>RUN
26.7

* BREAKPOINT AT 130

SCONTINUE
19.3

*x DONE =

If you specify a line number in the /ine-list which is a valid line >BREAK 130
number but 15 not a line in the program, the warning "BAD LINE
NUMBER" is displayed. Breakpoints are removed at the lines

specified which are program lines. * WARNING:
BAD LINE NUMBER

SUNBREAK 130,105

>RUN
26,7
19.3

*% DONE *#

II-34 User's Reference Guide

CONTINUE

5CONTINUE
| CON

The CONTINUE command may be entered whenever the program
stops running because of a breakpoint. For an explanation of
breakpoints and how they are set, see the BREAK command.
Remember that a breakpoint is also taken when the Break key
(CLEAR) is pressed while the program is running.

You cannot enter the CONTINUE command when the program has
stopped running for a breakpoint if you have edited the program
{added, deleted, or changed program lines). This prevents errors
that could result trom starting a revised program in the middle. If
you enter a CONTINUE command after you have edited the
program, the message "“CAN'T CONTINUE" is displayed on the

screen.

Whenever a breakpoint is taken, the standard character set is
restored. Thus, any standard characters that had been redefined
by CALL CHAR will be converted back to the standard
characters. Characters defined in the range 128-159 are
unaffected. If you continue execution after a breakpoint, the
standard character set is used. Note in the example that
character 42 was defined in statement 110 to be a solid block:
however, when the breakpoint was taken, it was changed back
to its standard character, an asterisk (*}. The triangle defined for
character code 128 is unaffected by the breakpoint.

Examples:

NEW
>10Q
>110
>120
>BREA

=RUN

* BREAKPOINT AT 110

>CONT
.6

A=9.6
PRINT A
END

K 110

INUE

x% DONE **

>BREAK 110

>RUN

* BREAKPOINT AT 110

>100

A=10.1

>CONTINUE
* CAN'T CONTINUE

>NEW

>100
>1 10
FFFF
>120
3F7F
>1130
>140
>150
»160
»170
>BREA

>RUN

* BR

>CONT

*x DO

CALL CLEAR

CALL CHAR{42,"FFFFFFFFFFF

FF")

CALL CHAR(128,"0103070FF

FF")

CALL HCHAR(IN,10,47.7)
CALL HCHAR{11,10,128,5)

FOR I=1 to 500
NEXT 1

END

K 130

EAKPOINT AT 130

INUE

* %k kk
adddd

NE #**

User's Reference Guide

11-35

TRACE

TRACE

The TRACE command allows you (o see the order in which the
computer performs statements as it runs a program. After the
TRACE command is entered, the line number of each program line
is displayed belore the statement is performed. The TRACE
command is most often used to help find errors. such as unwanted
infinite loops, in a program.

The TRACE command may be placed as a statement in a program.
The effect of the TRACE command or statement is cancelled when
the NEW command or UNTRACE command or statement is
performed.

Examples:

>NEW

>13Q PRINT "HI™

>110 B=27.9
>120 PRINT
130 END
>TRACE

>RUN
<100>HI
<110><120>
27.9
<1303

& DONE #%

>UNTRACE

>105 TRACE

>RUN

HI
<1148><120>
27.9
<130>

*% DONE *=*

:B

[1-36

User’s Reference Guide

UNTRACE

UNTRACE Examples:
The UNTRACE command cancels the effect of the TRACE
command. The UNTRACE command may be used as a statement SNEW

1N a program.
progr 1060 FOR I=1 TO 2

>110 PRINT I
>120 NEXT I
>130 END
>TRACE

>RUN
<100><110> 1
<t12a><110> 2
<120><130>

* & DDNE * %

>UNTRACF
>RUN

1

2

% DONE **

11-37

User’s Reference Guide

EDIT

EDIT line-number
line-number \FCTN 1
FCTN |

Existing program lines may be changed by entering Edit Mode.
You can enter Edit Mode by entering the EDIT command followed
by a /ine-number or by typing in a line-number followed by FCTN t
(Up-Arrow) or FCTN ¢ (Down-Arrow). Either way you choose

to enter Edit Mode will bring the line specified by the fine-number
onto the screen. If you specify a line-number which is not in the
program, the message "BAD LINE NUMBER" is displayed.

When you enter Edit Mode, the program line you requested is
displayed on the screen. The prompt character (>) is not displayed
to the left of the line when you are in Edit Mode. When the
requested line is displayed, the flashing cursor is positioned in the
second character position to the right of the line number. Changes
may be madc to any character on the hinc execept the line number
using the special keys described below and typing over the
characters you wish to change. You cannot move the cursor back
over the line number. Thus, you cannot change the line number in
Edit Mode. The special editing keys and their functions in Edit
Mode are discussed here.

ENTER — When you press the ENTER key, all changes you have made
to the program line become permanent and the computer leaves
Edit Mode. If you have erased the entire text of the program line
and then press ENTER, the program line is deleted. Note that the
cursor does not have to be at the end of the line for the entire line to
be entered.

FCTN 1 (UP) — When vou press the Up-Arrow key, all changes
you have made to the program line are entered and become
permanent. The next lower numbered line in the program is then
displayed for editing. If no lower numbered program line exists,
then the computer leaves Edit Mode, Note that the cursor does not
have to be at the end of the line for the entire line to be entered by
the Up-Arrow key.

FCTN 1| {DOWN) — When you press the Down-Arrow key, all
changes you have made to the program line are entered and become
permanent. The next higher numbered program line is then
displayed for editing. If no higher numbered program line exists,
then the computer leaves Edit Mode. Note that the cursor does not
have to be at the end of the line for the entire line to be entered by
the Down-Arrow key.

I1-38

User's Reference Guide

EDIT

FCTN ~ (LEFT) — The Left-Arrow (backspace) key moves the
cursor one position to the left. When the cursor moves over a
character it does not delete or change it in any way.

FCTN = {RIGHT) — The Right-Arrow (forwardspace) key moves
the cursor one position to the right. Using this key allows you to
move the cursor over a character without deleting or changing it in
any way.

FCTN 2 (INS) — The Insert key works in Edit Mode just as it does
in Command Mode. See Special Keys for information.

FCTN 1 {DEL) — The Delete key works in Edit Mode just as it does
in Command Mode. See Special Keys for information.

FCTN 4 (CLEAKR) — If you press the Clear key at any time while in
Edit Mode, the current line scrolls up on the screen and the
computer leaves Edit Mode. Any changes which had been made on
the line before you pressed the Clear key are ignored. Thus. the
existing program line does not change.

FCTN 3 (ERASE) — The Erase key erases the entire text of the
program line currently displayed for editing. The line number is not
erased.

User's Reference Guide

[1-39

SAVE

SAVE file-name

The SAVE command allows you to copy the current program in the
computer’s memory onto an accessory device. By using the OLD
command, you can later put the program intn memory for

running or editing.

A brief explanation of using a cassette recorder as a storage
device is given here. (For a more detailed discussion, see the
“Cassette Interface Cable” section of this manual.) Instructions
for using the T1 Disk Memory System are given in the owner's
manual that accompanies the T1 Disk Drive Controller.

You select which cassette recorder the computer will use by
entering the file-name CS1 or C52 following the keyword SAVE.
After you have connected your recorder to the computer. type the
SAVE command, and press ENTER. The computer then begins
printing instructions on the screen to help you understand the
SAVE procedures. Follow the directions as they appear on the
screen.

On the right are the computer-generated SAVE instructions. CS1 is
used in the example, but the same procedures apply for C52 also.

When you enter the SAVE command, the computer tells you how to
use the recorder, as shown on the right. After the program has been
copied, the computer asks if yvou want to check the tape to be sure
your program was recorded correctly. If you press N, the flashing
cursor will appear at the left of the screen. You may then type any
BASIC command you wish. If you press Y. directions for activating
the recorder will appear.

Note: The single-letter responses (Y, N, R, etc.) you give during the
SAVE routine must be upper-case characters. Huld down the SHIFT
key,and press the appropriate letter key.

Examples:

>SAVE (51

* REWIND CASSETTE TAPE
THEN PRESS ENTER

* PRESS CASSETTE RECORD
THEN PRESS ENTER

* RECORDING

*+ PRESS CASSETTE STOP
THEN PRESS ENTER

CHECK TAPE (Y DR N)?7 Y

+ REWIND CASSETTE TAPE
THEN FPRESS ENTER

* PRESS CASSETTE PLAY
THEN PRESS ENTER

* CHECKING
* DATA DK

* PRESS CASSETTE STOP
THEN PRESS ENTER

cs1

€s1

€s1

11-40

User's Reference Guide

SAVE

If an error occurred, you may choose one of these three options:

B Press R to record your program again. The same
instructions listed previously will guide you.

M Press € to repeat the checking procedures. At this point
you may wish to adjust the recorder volume and/or tone
controls.

W Press E to "exit” from the recording procedure. The
computer will tell you to stop the cassette and press
ENTER. You will see an error message on the screen. This
meang that the SAVE routine did not properly record your
program. After checking your recorder, you can try to
record the program again. When the flashing cursor
reappears on the screen, enter any BASIC command you
wish.

When the SAVE command is performed, whether or not an error
occurred in recording, the program remains in memory.

Examples:

* ERROR
PRESS
PRESS
PRESS

* ERROR
PRESS
PRESS
PRESS

* I/0 ER

NO DATA FOUND
TO RECORD

TO CHECK

TO EXIT

mo 0 i

or

IN DATA DETECTED
R TO RECORD

¢ TO CHECK

E TO EXIT

ROR 66

User's Reference Guide

I1-41

OLD

QLD fle-name

The OLD command copies a previously SAVEd program into the
computer's memory. You can then run, list, or change the program.
An explanation for using the audio cassette tape recorder (CS1)
with the OLD command is given here. Instructions concerning

the TI Disk Memory System are given in the owner's manual

that accompanies the T1 Disk Drive Controller.

After you type the OLD command and press ENTER, the computer
will begin printing instructions on the screen to help you through
the procedures. Follow the directions as they appear on the screen.
Be sure you have connected the recorder and inserted the proper
cassette tape.

On the right are the instructions displayed on the screen when you

enter the OLD command. You will find a detailed description
of these procedures in the "Cassette Interface Cable” section of

this book.

If the computer did not successfully read your program into
memory, an error oceurs and you may choose either of these
options:
W Press R to repeat the reading procedure. Before
repeating the procedure, be sure to check the items
listed in the "Cassette Interface” section.

B Press E to “exit” from the reading procedure. An error
message indicating that the computer did not properly
read your program into memory is displayed.

Note: The single-letter responses (B or R} you
give during the OLD routine must be upper-case
characters. Hold down the SHIFT key, and press
the appropriate letter key.

When the flashing cursor reappears on the screen, you may enter
any BASIC command you wish.

Even though the program has not been successfully read into the
computer's memaory, it may overwrite part or all of any program
that was previously in memory. You may want to LIST and
check the memory contents before going on.

Examples:

>0LD €81

* REWIND CASSETTE TAFE €351
THEN PRESS ENTER

* PRESS CASSETTE PLAY €s1
THEN PRESS ENTER

* READING
* DATA OK

* PRESS CASSETTE STOP st
THEN PRESS ENTER

ar
* ERROR - NO DATA FOUND
PRESS R TO READ
PRESS E TO EXIT

* I/D0 ERRGR 56

I1-42

User’s Reference Guide

DELETE

DELETE ; file-name %
program-name

The DELETE command allows you to remove a program or a
data file from a diskette. The file-name and program-name are
string expressions. If a string constant is used, you must enclose
it in quotes.

You may also remove data files from the computer system by
using the keyword DELETE in the CLOSE statement. The
action performed depends upon the device used. See the owner’s
manual enclosed with the TI Disk Drive Controller for additional
information.

If you use DELETE with cassettc tapc recorders, no action
occurs. The message on the right will appear on the screen.

Examples:

>SAVE OSK1.DATA
=DELETE “OSK1.DATA"

>500 CLOSE #7:DELETE

>DELETE "CS1"

* PRESS CA33ETTE STOP
THEN PRESS ENTER

c31

ITerr'e Referance Minde

1T.47

General Program Statements

Introduction

This section describes those general program statements that do
not serve an input-output function. They include the LET
statement, which allows you to assign values to variables, the
STOP, END, and REMark statements, and those statements which
control the path the computer takes when it runs your program.
These program control statements, including the GOTO, the ON-
GOTO, the IF-THEN-ELSE, the FOR-TO-STEP, and the NEXT
statements, allow you to easily program loops and conditional and
unconditional branches. By using the statements in this section and
in the Input-Output section, you can write enjoyable, useful
programs.

[1-44

User's Reference Guide

LET (Assignment Statement)

| LET | variable = expression

The LET statement allows you to assign values to variables in your
program. The computer evaluates the expressiorn to the right of the
equals sign and puts its value into the variable specified to the left
of the cquals sign.

The variable and the expression must correspond in type:
numeric expressions must be assigned to numeric variables;
string expressions must be assigned to string variables. The rules
governing overflow and underflow for the evaluation of a numeric
expression are used in the LET statement. See "Numeric
Constants” for a full explanation. If the length of an evaluated
string expression exceeds 255 characters, the string is truncated
on the right, and the program continues. No warning is given.

You may use relational operators in numeric and string expressions.
The result of a relational operator is -1 if the relationship is true
and is 0 if the relationship is false.

Examples:

>NEW

>100
>110
2120
>130
>140
>RUN

LET M=1000
LET £=186000
E=M*(A2
PRINT E

END

3.453%96E+13

% DONE #+

>NEW

>100
>110
>120
»>130
>RUN

LET X$="HELLD,
NAMES="GENIUS!"
PRINT X$;NAMES
END

HELLD, GENIUS!

x% DONE *%*

>NEW

*100
>110
*>120
>130
>140
>150
>160
>RUN

20

20

LET A=20
B=10

LET C=A>B
PRINT A;B;C
C=A<B

PRINT A;B;C
END

10 -1
10 0

** BONE =*%

User's Reference Guide

I1-45

REMark

REM remark

The REMark statement allows you 0 explain and document your
program by inserting comments in the program itself. When the
computer encounters a REMark statement while running your
program, it takes no action but proceeds (v the uext statement.

You may use any printable character in a REMark statement. The
length of the REMark statement is limited by the length of the
input line (112 characters or four lines on the screen). If you do not
wish to break a word in the middle, press the space bar repeatedly
until the cursor returns to the left side of the screen, and then you
may begin typing again.

Examples:

*NEW

>100
10
#110
>120
>130
>140
>RUN
1
10

REM COUNTING FROM 1 TO

FOR X=1 710 10
PRINT X;

NEXT X

END

2 3 4 5 &6 7 8B 9

*% DONE *+

>NEW

>100
>110
>120

a=762
B=425
REM NOW PRINT THE SUM OF

A AND B

*130
>140
»RUN

PRINT A+B
END

1187

% DONE *%

11-46

User's Reference Guide

END

END Examples:

The END statement terminates your program when it is being run >NEW
and may be used interchangeably with the STOP statement in T1

BASIC. Although the END statement can appear anywhere in the i}'?g ;;;g
program, it is normally placed at the last line number in the >120 C=A*B
program and thus ends the program both physically and logically. ;: zg ::é NT ¢
Although you may place END statements anywhere in your >RUN
program, the STOP statemneut is usually used if you want to have 200

other termination points in your program. In TI BASIC you are <t DONE *#

not required to place an END statement in the program.

User's Reference Guide 11-47

STOP

STOP

The STOP statement terminates your program when it is being run
and can be used interchangeably with the END statement in T1
BASIC. You can place STOP statements anywhere in your
program and use several STOP statcments in the same program.
Many BASIC programmers use the END statement if there is only
one ending point in the program.

Examples:

*NEW

>100
>110
>120
>130
>RUN

A=5

BE$="TEXAS INSTRUMENTS"
PRINT BE;A

sTOP

TEXAS INSTRUMENTS 5

*%x DONE *%

>NEW

2100
>t10
>120
>130
>140
>150
>160
>170Q
>180
>190
>200
>RUN

CALL CLEAR

FOR I=1 TO 15
CALL HCHAR({1,1,42,768)
GDsuB 160

NEXT I

sTOP

F=1

B=I+1

CALL COLOR{Z2,F,B)
RETURN

END

--SCREEN WILL FILL WITH

ASTERISKS AND CHANGE
COLORS 15 TIMES

*% DONE *%

[1-48

User's Reference Guide

GOTO

GOTO |
GO TO |

line-number

The GOTO statement allows you to transfer control backward or
forward within a program. Whenever the computer reaches a
GOTO statement. it will always jump to the statement with the
specified line-number. This is called an uncondrtional branch.

In the program on the right, line 170 is an unconditional branch.
The computer always skips to line 140 at this point. Line 16U 1s
a conditional branch (see "IF-THEN-ELSE"). The computer
jumps to line 180 only if COUNT and DAYS are equal.

If you should tell the computer to skip to a /tne-number that does
not exist in your program, the program will stop running and print
the message "BAD LINE NUMBER."

Note that the space between the words GO and TO is optional.

Examples:

>NEW

>100

THE
>110
>120
>130
>140
>150
>160
>170
>180
>190
>200

REM HOW MANY GIFTS ON
12 DAYS OF CHRISTMAS?
GIFTS=0

paYs=1

COUNT=0

COUNT=COUNT+1
GIFTS=GIFTS+1

IF COUNT=DAYS THEN 180
GOTO 140

DAYS=DAYS+]

1f DAYS<=12 THEN 130
PRINT "TOTAL NUMBER OF G

IFTS 18";GIFTS

>210
>RUN

END

TOTAL NUMBER OF GIFTS IS 738

*%x DONE **

User's Reference Guide

11-49

ON-GOTO

GOTO
GO TO

ON numeric-expression 3 line-number|,fine-numberi. . .

The ON-GOTO statement tells the computer to jump to one of
several program lines, depending on the value of the numeric-
expression.

The computer first evaluates the numeric-expression and rounds
the result to an integer. This integer then becomes a pointer for the
computer, indicating which program line in the ON-GOTO
statement to perform next. If the value of the numeric-expression is
1, the computer will proceed to the statement with the first /ine-
number specified in the ON-GOTO statement. If the value is 2, the
computer will branch to the statement with the second /ine-number
listed in the ON-GOTO statement. and so on.

If the rounded value of the numeric-expression is less than 1 or
greater than the number of fine-numbers listed in the ON-GOTO
statement, the program will stop running and print “BAD VALUE
IN xx.” If the line-number you specify is outside the range of line
numbers in your program, the message "BAD LINE NUMBER" is
displayed and the program stops running.

Examples:

>NEW

>100 REM HOW DOES ON-GDTO
WORK?

2110 INPUT X

>120 ON X GOTO 130,150,170,19
0,210

>130 PRINT “X=1"

>140 6OTO 110

>150 PRINT *X=2"

>160 60TD 110

>170 PRINT “X=3"

>180 G0OTO 110

>190 PRINT "X=4"

>200 GOTO 110

>210 END

ZRUN

* BAD VALUE IN 120

I1-50

User's Reference Guide

IF-THEN-ELSE

I relational-expression
nummeric-expression

}THEN fine-1 |ELSE iine-2

The IF-THEN-ELSE statement allows you to change the normal
sequence of your program execution by using a conditional
branch.

The computer evaluates the expression you have included in the
stalement, such as A>50. If the expression is true, the computer
will jump to /ine-1, which follows the word THEN. If the condition
is false, the computer will jump to fine-2 following the word ELSE.
I ELSE is viuitied, the computer continues with the next program
line.

In an [IF-THEN-FLSE statement. a value of 0 is treated as false,
and any other value is treated as true. Thus, you can use
multiplication as a logicall AND and addition as a logical-OR. For
example,

IF (A<<B)x(C<D) THEN 1000
will go to line 1000 if A is less than B and C is less than D.

The allowable relational operators in T1 BASIC are:

m equal to (=)

W less than (<)

B greater than (=)

m not equal to (<< =)

W less than or equal to (<7 =)

@ greater than or equal to (> =)

Here are some valid relationghip tests:

|A>T
mAs<"YES”

| (A+By2< =AVG
m CHR$L)="A"

B (A$&CS) > =D}

A numeric-expression must be compared to another numeric-
expression and a string-expression to another string-expression.
Numeric-expressions are compared algebraically. String
expressions are compared left-to-right, character by character,
using the ASCII character codes. A character with a lower
ASCII code will be considered less than one with a higher ASCII
code. Thus, you can sort strings into numeric or alphabetic
order. If one string is longer than the other, the comparison 13
made for each character in the shorter string. If there i1s no
difference. the computer considers the longer string to be greater.

Examples:

>NEW

>100

REM FIND THE LARGEST OF

A SET OF NUMBERS

>110 INPUT "HOW MANY VALUES?"
:N
>120 INPUT "VALUE?":A
>130 L=A
>140 N=N-=1
>150 IF N<=0 THEN 180
>160 INPUT "VALUE?":A
>170 IF L>A THEN 140 ELSE 130
>180 PRINT L;"I5 THE LARGEST"
>190 END
>RUN
HOW MANY VALUES?3
VALUE?456
VALUE?321
VALUE?292
456 1§ THE LARGEST
k% DONE *+
>*NEW
>100 INPUT "A3 IS5 ":A%
>110 INPUT "BS 15 ":B%
»120 IF A$=B$ THEN 160
>130 IF A$<B$ THEN 130
>140 PRINT “B% 1S5 LESS"
>150 6070 190
>160 PRINT "A$=B%"
>17¢ GOTO 190
>180 PRINT "B% 15 GREATER"
>190 END
>RUN
A$ IS TEXAS
B$ IS5 TEX
B% IS LESS

% DONE w»

>RUN

A% IS TAXES
B® I5 TEX
B3 IS GREATER

*% DONE *%

IF-THEN-ELSE

An alternative format of the IF-THEN-ELSE statement is to use a
numeric-expression with no relationship expressed. In the example
on the right, the computer will evaluate the expression A +B. If the
result is zero, the expression 1s treated as false. A non-zero result is
treated as true. This is the same as:

IF expression <> 0 THEN line-1.

Examples:

*NEW

>100 INPUT "A IS ":A

>110 INPUT "p 15 ":B

>120 IF A+B THEN 150

>130 PRINT "“RESULT Is ZERO,EX
PRESSION FALSE"

>140 GOTOD 100

>150 PRINT "RESULT IS NDN-ZER
0,EXPRESSION TRUE"

»160 6D TO 100

*RUN
A IS 2
B IS 3
RESULT IS NON-ZERO,EXPRESSIO
N TRUE
A 1S 2
B Is -2
RESULT IS ZERO,EXPRESSION FA
LSE

(Press CLEAR o end loop)

11-52

User's Reference Guide

FOR-TO-STEP

FOR control-variable = initial-value TO limitISTEP incrementl

The FOR-TO-STEP statement is used for casy programming of
repetitive (iterative) processes. Together with the NEXT
statement, the FOR-TO-STEP statement 1s used to construct a
FOR-NEXT loop. If the STEP clause is omitted, the computer
uses an Increment of +1.

The control-variable is a numeric variable which acts as a counter
for the loop. When the FOR-TO-STEP statement is performed, the
control-variable is set to the fnitial-value. The computer then
performs program statements until it encounters a NEXT
statement.

When the NEXT statement is performed, the computer increments
the controf-variable by the amount specified in the STEF clause.
(When the increment is a negative value, the control-variable is
actually reduced by the STEP amount.) The computer then
compares the control-variable to the value of the /imit. If the
control-variable does not yet exceed the fimit, the computer repeats
the statements following the FOR-TO-STEP statement until the
NEXT statement is again encountered and performed. If the new
value for the control-variable is greater than the /imit (if the
increment is positive) or less than the /imit (if the increment 1s
negative), the computer leaves the loop and continues with the
program statement following the NEXT statement. The value of

the control-variable is not changed when the computer leaves the
FOR-NEXT loop.

You control the number of times the FOR-NEXT loop is performed
by the values you assign in the FOR-TO-STEP statement. The
limit, and, optionally, the STEP increment are numeric-expressions
that are evaluated once during a loop performance (when the FOR-
TQ-STEP statement is encountered) and remain in effect until the
loop is finished. Any change made to these values while a loop is in
progress has no effect on the number of times the loop is performed.
If the value of the increment is zero, the computer displays the error
message "BAD VALUE IN xx" and the program stops running.

Examples:

>NEW

>100 REM COMPUTING SIMPLE
INTEREST FOR 10 YEARS

>11¢ INPUT "PRINCIPLE? ":P

>720 INPUT "RATE? ":R
>130 FOR YEARS=1 TOQ 10
>140 P=P+(P*R)
>150 NEXT YEARS
>160 P=INT(P*100+.5)/100
>170 PRINT P
>180 END
>RUN

PRINCIFLE? 100

RATE? .0775

210.95

*x DONE *x%x

>NEMW

>100 REM EXAMPLE OF
FRACTIONAL INCREMENT

>11¢ FOR X=.1 70 1 STEP .2

>120 PRINT X;

>130 NEXT X

>140 PRINT :X

>150 END

>RUN
1.3 s L7 L9
1.1

w% DONE +%

>NEW

*100¢ L=5

>110 FOR I=1 7O L

>120 L=20

>130 PRINT L;I

>140 NEXT 1

>150 END

>RUN
20
20
20
20
20

L B P N

% DONE *w»

User's Reference Guide

I1-53

FOR-TO-STEP

After you enter a RUN command, but before your program is
performed. the computer checks to see that vou have the same
number of FOR-TO-STEP and NEXT statements. If you do not
have the same number, the message "FOR-NEXT ERROR” is
displayed and the program is not run.

If you change the value of the control-variable while the loop is
performed, the number of times the loop is repeated is affected.

In TI BASIC the expressions for initial-value, limit, and increment
are evaluated before the rmitial-value is assigned to the control-
variable. Thus, in the program on the right, in line 110 the value 5
is assigned to the /imit before assigning a value to I as the control-
variable. The loop is repeated 5 times, not just once.

The sign of the controf-variable can change during the performance
of a FOR-NEXT loop.

When performing the FOR statement, the computer checks that the
Iimitexceeds the initial-value before it does the loop. The initial-
value in the FOR statement does not have to be 1. The computer
can begin counting with whatever numeric value you wish.
However, if the initial-value is greater than the /imit and the
increment is positive, the loop will not be performed at all. The
computer will continue on to the statement following the loop.
Similarly, if the incrementis negative and you assign an rmtial-
value less than the /imit, the loop will not be performed.

Examples:

10
11

FOR I=1 70 10
I=1+1

PRINT I

NEXT I

PRINT I

END

** DONE *=*

>NEW

2100
>110
»12¢
>13¢
>14¢
>RUN
1

1=5

FOR I=1 TO I
PRINT I;
NEXT I

END

2 3 4 5

®* DONE %%

>NEW

>100
>110
>120
»130
>RUN
2

FOR I=2 TO =3 STEP -1
PRINT I;

NEXT 1

END

1 4 =1 -2 -3

*% DONE **

>NEW

>100

REM INITIAL VALUE TOO

GREAT

>119Q
>120
>130
>140
>RUN

FOR I=6 T0 5
PRINT I

NEXT I

END

*% DONE *%

I1-54

User's Reference Guide

FOR-TO-STEP

FOR-NEXT loops may be "nested”; that is. one FOR-NEXT loop
may be contained wholly within another. You must use caution,
however, to observe the following conventions:

B Each FOR-TO-STEP statement must be paired with a
NEXT statement.

B Different control-variables must be used for each nested
FOR-NEXT loop.

B If a FOR-NEXT loop contains any portion of another
FOR-NEXT loop. it must contain a/f of the second FOR-
NEXT loop.

Otherwise, the computer will stop running your program and print
the error message "CAN'T DO THAT IN xx" if a FOR-NEXT loop
overlaps another.

You may branch out of a FOR-NEXT loop using GOTO and IF-
THEN-ELSE statements, but you may not branch into a FOR-
NEXT loop using these statements. You may use GOSUB
statements to leave a FOR-NEXT loop and return. Be sure you do
not use the same control-variable for any FOR-NEXT loops you
may have in your subroutines.

Examples:

>NEW

>100 REM FIND THE LOWEST
THREE DIGIT NUMBER EQUAL TO
THE SuM OF THE CUBES OF ITS
DIGITS

>110 FOR HUND=1 TO 9

>120 FOR TENS=0 T0 9

>130 FOR UNITS=0 70 9

>140 SUM=1Q0*HUND+T0*TENS+UNI
TS

>150 IF SUMS>HUNDA3+TENSA3+UN
IT5A3 THEN 180

>160 PRINT SUM

*»170 GOATR 210

>180 NEXT UNITS

>190 NEXT TENS

>200 NEXT HUND

>210 END

>RUN

153

% DONE #

>NEW

>100 FOR I=1 70 3
>110 PRINT I
>120 GOSUB 140
>130 NEXT 1
>140 FOR I=1 TD §
>150 PRINT I;
>160 NEXT I
>170 RETURN
>180 END
>RUN

1

1 2 3 4 5

* CAN'T DD THAT IN 130

User's Reference Guide

[I-55

NEXT

NEXT control-variable

The NEXT statement is always paired with the FOR-TO-STEP
statement for construction of a loop. The control-variable is the
same one that appears in the corresponding FOR-TQ-STEP

statement.

The NEXT statement actually controls whether the computer will
repeat the loop or exit to the program line following the NEXT
statement.

When the computer encounters the NEXT statement, it adds the
previously evaluated increment in the STEP clause to the control-
variable. It then tests the control-variable to see if it exceeds the
previously evaluated /imit specified in the FOR-TQ-STEP
statement. If the control-variable does not exceed the Hmit, the loop
is repeated.

Examples:

>NEW

>100
10
>110
>120
*>130
>140
>RUN
1
10

REM COUNTING FROM 1 T(

FOR %=1 TO 10
PRINT ¥;

NEXT X

END

2 3 4 5 6 7 8 9

*% DONE *%

>NEW

>100
>110
>120
>130
>140
>150
>160
»170
>180
>190
>200
>210
2220
>230
>240
»250
>RUN

REM ROCKET COUNTDOWN
CALL CLEAR

FOR I=10 70 1 STEP -1
PRINT I

FOR DELAY=1 TO 200

NEXT DELAY

CALL CLEAR

NEXT 1

PRINT "BLAST OFF!"

REM CHANGE SCREEN COLOR
FOR COLOR=2 TQ 16 STEP 2
CALL SCREENC(COLOR)D

FOR DELAY=1 TO0 100

NEXT DELAY

NEXT COLOR

END

--computer will flash countdow

BLAST DFF!

-=s¢reen will change color
8 times

% [DONE **

I1-56

User's Reference Guide

Input-Output Statements

introduction

INPUT-OUTPUT statements allow you to transfer data in and out
of your program. This section describes these statements (PRINT.
DISPLAY, INPUT, READ, DATA, RESTORE) as they are used

with your TI computer keyboard and screen.

Data can be input to your program from three types of sources:

m from the keyboard — using the INPUT statement

m internally from the program itself — using the READ,
DATA, and RESTORE statements

m from files stored on accessory devices — using the INPUT
statement

Data can go to two types of output devices:

the screen — using the PRINT or DISPLAY statements

W files stored on accessory devices — using the PRINT
statement

There are two other sections in this Reference Guide which
describe additional input-output capabilities of the TI computer.
The "File Processing” section helps you construct the statements
used with accessory devices. And, since your TI computer is
enhanced by graphics, color, and sound, many built-in
subprograms also serve an input-output function. The “Color
Graphics and Sound” section shows you how to use these
features.

User’s Reference Guide

[1-57

INPUT

INPUT linput-prompt:| variable-list

{For information on the use of the INPUT statement with a file, see
the "File Processing” section.)

This form of the INPUT statement is used when entering data via
the keyboard. The INPUT statement causes the program to pause
until valid data is entered from the keyboard. Although the
computer usually accepts up to one input line (4 lines on your
screen) for each INPUT statement, a long list of values may be
rejected by the computer. If you receive the message "LINE TQO
LONG?” after entering an input line, you will need to divide the
lengthy INPUT statement into at least two separate statements.

Entering the Input Statement

The input-prompt is a string expression that indicates on the screen
the values you should enter at that time. Including an input-prompt
in the INPUIT statement is optional. When the computer performs
an INPUT statement that does not have an rnput-prompt, it
displays a question mark (?) followed by a space and waits for you
to enter your data.

If you use an input-prompt, the string expression must be followed
by a colon. When the computer performs this type of INPUT
statement, it will display the input-prompt message on the screen
and wait for you to enter your data.

The variable-list contains those variables which are assigned values
when the INPUT statement is performed. Variable names in the
variable-fist are separated by commas and may be numeric and/or
string variables.

Examples:

>NEW

>100 INPUT B
¥110 PRINT B
>120 END
>RUN

7 25

25

% DONE ++*

>NEW

>100 INPUT "cOST OF CAR?'":B
>110 A$="TAX?"
>120 INPUT A%:(
>130 INPUT "SALES "&AS:)X
>140 PRINT B;(C;X
>150 END

RUN

COST OF CAR?5500

TAX?500

SALES TAX?500

5500 500 5440

*% DONE *x

>NEW

>100 INPUT A,.B%,C,D
>110 PRINT A:B5:C:D
>120 END
RUN
? 10,HELLD,25,3.2
14
HELLDO
25
3,2

% DONE *%

[1-58

User’s Reference Guide

INPUT

Responding to an Input Statement

When an INPUT statement is performed, the values corresponding
to the variables must be entered in the same order as they are listed
in the INPUT statement. When you enter the values, they must all
be entcred in one input line (up to 4 screen lines) with the values
separated by commas. When inputting string values, you may
enclose the string in quotes. However, if the string you wish to
input contains a comma, a leading quote mark, leading spaces, or
trailing spaces, it must be enclosed in quotes.

Variables are assigned values from left to right in the variable-l1st.
Thus, subscript expressions in the variable-list are not evaluated
until variables to the left have been assigned values.

Examples:
>NEW

>100 INPUT A%
>110 PRINT AS$::
»>120 INPUT B%
>13%30 PRINT B$::
>140 INPUT (%
>150 PRINT (%::
>160 INPUT DS
>170 X=500

»180 PRINT D$;X::
>190 INPUT ES
>200 PRINT ES%
>210 END

RUN

7 YJONES, MARY™
JONES, MARY

? "“"HELLO THERE"IIII
"MELLO THERE"

? WJAMES B. SMITH, JR."
JAMES B. SMITH, JR.

7 "SELLING PRICE IS "
SELLING PRICE 1§ 500

? TEXAS
TEXAS

*% DONE *x*

>NEW

>100 INPUT I,A(D
>110 PRINT I:A(D)
>120 END
RUN
? 3,7
3
7

** DONE *%

User's Reference Guide

I1-59

INPUT

When input information is entered, it is validated by the computer.
If the input data is invalid, the message "WARNING: INPUT
ERROR, TRY AGAIN" appears on the screen and you must
reenter the line. Here are some causes of this message:

B if you try to enter input data that contains more or fewer
values than requested by the INPUT statement.

8 if you try to enter a string constant when a number is
required. (Remember, a number is a valid string, so you
may enter a number when a string constant is required.)

If a number is input that causes an overflow, the

message "WARNING: NUMBER TOO BIG, TRY AGAIN"
appears on the screen and you must reenter the line. If a number is
input that causes an underflow, the value is replaced

by zero. No warning message is given.

Examples:
“NEW

>100 INPUT A,BS
>110 PRINT A;B%
>120 END
>RUN

? 12,HI1,3

* WARNING:
INPUT ERROR IN 100
TRY AGAIN: HI,3

A WARNING:

INPUT ERROR IN 100
TRY AGAIN: 23,HI
23 HI

x* DONE *=»

>NEW

3100 INPUT A
>110 PRINT A
>120 END
*RUN

? 23E139

* WARNING:

NUMBER TQO BIG IN 100
TRY AGAIN: 23E=-139
0

*% DONE ##%

I1-60

User's Reference Guide

READ

READ vartable-list

The READ statcment allows you to read data stored inside your
program in DATA statements. The variable-list specifies those
variables that are to have values assigned. Variable names in the
variable-list are separatcd by commas. The variable-list may
include numeric variables and/or string variables.

The computer reads each DATA statement sequentially from left to
right and assigns values to the variables in the vartable-list from lett
to right. Subscript expressions in the variable-fist are not evaluated
until variables to the left have been assigned.

DATA statements are normally read in line-number order. Each
time a READ statement is performed, values for the variables in
the variable-list are assigned sequentially, using all the items in the
data-list of the current DATA statement before moving to the next
DATA statement. You can override this sequencing, however, by
using the RESTORE statement.

By following the program on the right, you can see how the READ,
DATA. and RESTORE statements interact. In line 120 the
computer begins assigning values to A and B from the DATA
statement with the lowest line number, line 180. The first READ,
therefore, assigns A=2 and B=4. The next performance of the
READ statement still takes data from line 180 and assigns A =0,
B=8. The third READ assigns the last item in line 180 to the
variable A and the first item in line 190 to the variable B, so
A=10, B=12. The fourth READ, the last in the J-loop. continues
to get data from line 190, so A =14, B=16. Before going through
the I-loop again. however, note that the computer encounters a
RESTORE statement in line 160 which directs it to get data from
the beginning of line 190 for the next READ statement. The
computer then completes the program by reading the data from line
190 and then from line 200.

Examples:

>NEW

>100 FOR I=1 1D 3
»110 READ X.Y
>120 PRINT X;Y¥

>130 NEXT I _
>140 DATA 22,15,36,52,48,96.5
»>150 END
>RUN
22 15
36 52
48 96.5
x DONE »
>NEW

>100 READ I,AC(I)
>11¢ DATA 2,35
>120 PRINT A(2)
>130 END
>RUN

35

% DONE **%

>NEW

>100 FOR I=1 TO 2

>110 FOR J=1 70 4

»120 READ A,B

>130 PRINT A;B;

>140 NEXT J

>150 PRINT

>160 RESTORC 190

>170 NEXT 1

>180 DATA 2,4,6,8,10

>190 DATA 12,14,16,18

>200 DATA 20,22,24,26

>210 END

>RUN
2 4 6 B 10 12 14
12 14 16 18 20 22
26

x% DONE =

16
24

User's Reference Guide

11-61

READ

When data is read from a DATA statement, the type of data in the
data-list and the type of variables to which the values are assigned
must correspond. If you try to assign a string value to a numeric
variable, the message "DATA ERROR IN xx" {xx is the line
number of the READ statement where the error occurs) appears on
the screen and the program stops running. Remember that a
number is a valid string so numbers may be assigned to either
string or numeric variables,

When a READ statement is performed, if there are more names in
the variable-fist than values remaining in DATA statements, a
"DATA ERROR" message is displayed on the screen and the
program stops running. If a numeric constant is read which causes
an underflow, its value is replaced by zero — no warning is given
— and the program continues running normally. If a numeric
constant is read which causes an overflow, its value is replaced

by the appropriate computer limit, the message "WARNING:
NUMBER TOO BIG" is displayed on the screen, and the
program continues. For information on underflow, overflow, and
numeric limits, see "Numeric Constants.”

Examples:

>NEW

>100
>110¢
>120
>130
>RUN

READ A,B
DATA 12,HELLD
PRINT A;B

END

* DATA ERROR IN 100

pd |

>NEW

>100
>110
»120
>130
>140
>150
>RUN

READ A,B
DATA 12E-135
DATA 36E142
PRINT :A:B
READ ¢

END

* WARNING:
NUMBER TGO BIG IN 100

0

G.9999FE+x*

* DATA ERROR IN 140

>0

11-62

Users Reference Guide

DATA

DATA data-list Examples:
The DATA statement allows you to store data inside your program.
Data in the data-/ists are obtained via READ statements when the
program is run. The data-list contains the values to be assigned to
the variables specified in the variable-list of a READ statement.
Items in the data-list are separated by commas. When a program
reaches a DATA statement, it proceeds to the next statement
with no other cffect.
DATA statements may appear anywhere in a program, but the >NEW
order in which they appear is important. Data from the data-lists 5100 FOR I=1 TO S
are read sequentially, beginning with the first item in the first DATA >110 READ A,B
statement. If your program includes more than one DATA ;]1 %g EE)I([“fT I”‘" B
statement. the DATA statements are read in ascending line-number 5140 DATA 2.4,6,7,8
order unless otherwise specified by a RESTORE statement. >150 DATA 1,2,3,4,5
Thus, the order in which the data appears within the data-/ist and :;82 END
the order of the DATA statements within the program normally r
determine in which order the data is read. g :
2 3
4 5
*%x DONE *w
Data in the data-list must correspond to the type of the variable to >NEW
which it is assigned. Thus, if a numeric variable is specified in the 5100 READ AS,BS,C.D
READ statement, a numeric constant must be in the corresponding 5110 PRINT AS:B%:C:D
place in the DATA statement. Similarly, if a string variable 1s 120 DATA HELLU,"JONES, MARY"
specified, a string constant must be in the corresponding place in ,;28,3. 0018
the DATA statement. Remember that a number is a valid string, so SRUN
you may have a number in the corresponding place in the DATA HELLD
statement when a string constant is required. 4 ggss s MARY
. . . 14
When using string constants in a DATA statement, you may enclosc 31416
the string in quotes. However, if the string you include contains a *% DONE **
comma, a leading quote mark, leading spaces, or trailing spaces, 1t
must be enclosed in quotes.
If the list of string constants in the DATA statement contains >NEW
adjacent commas, the computer assumes you want to enter a null 5100 READ AS.BS,C
string (a string with no characters). In the example on the right, the 5310 DATA HI.,2
DATA statement in line 110 contains two adjacent commas. Thus, >120 PRINT "AS IS ";AS
o : . >130 PRINT "BS IS “;B%
a null string is assigned to B$, as you can see when the program 15 2120 PRINT "€ IS ";¢
run. >150 END
RUN
AS 1S HI
BS IS
c1s 2
*% DONE *%
User's Reference Guide 11-63

RESTORE

RESTORE lline-number)

{(See the "File Processing” section for information about using

RESTORE in file processing.)

This form of the RESTORE statement tells your program which
DATA statement to use with the next READ statement.

When RESTORE is used with no /ine-number and the next READ
statement is performed, values will be assigned beginning with the
first DATA statement in the program.

When RESTORE is followed by the line-number of a DATA
statement and the next READ statement is performed, values will
be assigned beginning with the first data-item in the DATA
statement specified by the /ine-number.

If the /ine-number specified in a RESTORE statement is not a
DATA statement or is not a program line number, then the next
READ statement performed will start at the first DATA statement
whose line number 1s greater than the one specified. If there is no
DATA statement with a line number greater than or equal to the
one specified, then the next READ statement performed will cause
an out-of-data condition and a "DATA ERROR" message will be
displayed. If the /ine-number specified is greater than the highest

line number in the program, the program will stop running and the
message "DATA ERROR IN xx” will be displayed.

Examples:

>NEW

>100 FOR I=1 TO 2

>110 FOR J=1 TD 4

>120 READ A

>130 PRINT A;

>140 NEXT J

>15¢ RESTORE 180

>160 NEXT I

170 DATA 12,33,41,26,42,50
>180 DATA 10,20,30,40,50
>190 END

>RUN
12 33 41 26 10 20 30
]
% DONE %%
>NEW

>100 fOR I=1 TO 5
>110 READ X
»>120 RESTORE
>130 PRINT X;
>140 NEXT I
>150 DATA 10,20,30
>160 END
>RUN

10 10 10 10 10
*% DONE *#%

>NEW

>100 READ A,B
»110 RESTORE 130
>120 PRINT A;B
>130 READ C,D
>140 PRINT C;D
>150 DATA 26.9,34.67
>160 END
SRUN
26.9 34,67
26.9 34,47

%% DONE ++

>110 RESTORE 145

>RUN
26.9 34,67
26.9 34.67
*% DONE *w

>110 RESTORE 155
>RUN
26.9 34.67
* DATA ERROR IN 130

>l

1-64

User’s Reference Guide

PRINT

PRINT |print-list)

(For information on using the PRINT statement with files, see
the “File Processing” section.)

The PRINT statement lets you print numbers and strings on the
screen. The print-list consists of

B print-items — numeric expressions and string expressions
which print on the screen and fab-functions which control
print positioning (similar to the TAB key on the typewriter).

m print-separators — the punctuation between print-items
{commas, colons, and semicolons) which serves as
indicators for positioning data on the print-line.

When the computer performs a PRINT statement, the values of the
expressions in the print-list are displayed on the screen in order
from left to right, as specified by the print-separators and
tab-functions.

Printing Strings

String expressions in the print-list are evaluated to produce a string
result. There are no blank spaces inserted before or after a string.
If you wish to print a blank space before or after a string, you can
include it in the string or insert it separately with quotes.

Printing Numbers

Numeric expressions in the print-list are evaluated to produce a
numeric result 1o be printed. Positive numbers are printed with a
leading space (instead of a plus sign) and negative numbers are
printed with a leading minus sign. All numbers are printed with a
trailing space.

Examples:

>NEW

>100
>110
>120
>130
>140
>150
>RUN
10
TI
HEL

* ¥k

>NEW

>100
>110
>120
>130
»>140
>150
>RUN
HIJ
HI
HEL

£ 81

>NEW

>100
>*110
>120
>130
>140
»150
>RUN
10
-20

A=10

B=20

STRINGS$="TI COMPUTER"
PRINT A;B:STRINGS
PRINT "HELLQ, FRIEND"
END

20
COMPUTER
LO, FRIEND

BONE %%

NS="JOAN"

M$=!'HI||

FRINT M$;N$

PRINT M$&" "ENS
PRINT "HELLO ";N$
END

OAN
JOAN
LO JOAN

DONE =%

LET A=10.2
B=-30.5
(=16.7
PRINT A;B;C
PRINT AtB
END

.2 =30.5 16.7
.3

*k DONE ®w

User's Reference Guide

11-65

PRINT

The PRINT statement displays numbers in either normal decimal
form or scientific notation, according to these rules:

1. All numbers with 10 or fewer digits are printed in normal
decimal form.

2. Integer numbers with more than 10 digits are printed in scientific
notation.

3. Non-integer numbers with more than 10 digits are printed in
scienttfic notation only if they can be presented with morce
significant digits in scientific notation than in normal decimal
form. If printed in normal decimal form, all digits beyond the
tenth digit are omitted.

If numbers are printed in normal decimal form, the following
conventions are obhserved:

@ [ntegers are printed with no decimal point.

B Non-integers have the decimal point printed in its proper
place. Trailing zeros in the fractional part are omitted. If
the numbcr has more than ten digits, the tenth digit is
rounded.

8 Numbers with a value less than one are printed with no
digits to the left of the decimal point.

If numbers are printed in scientific notation, the format is:
mantissa E exponent
and the following rules apply:

B The mantissa is printed with 6 or fewer digits and is
always displayed with one digit to the left of the decimal
point.

B Trailing zeros are omitted in the fractional part of the
mantissa.

B If there are more than five digits in the fractional part of
the mantissa, the fifth digit is rounded.

B The exponent is displayed with a plus or minus sign
followed by a two-digit number.

® If you attempt to print a number with an exponent value
larger than +99 or smaller than —99, the computer will
print ** following the proper sign of the exponent.

B "E" must be an upper-case character.

Examples:

>PRINT -10;7.1
-10 7.1

>PRINT 93427685127
9.34277E+10

>PRINT 1E-10
0000000001

>PRINT 1.2E-10
1.2E-10

>PRINT .000000000246
2.46E-10

>PRINT 15;-3
15 -3

>PRINT 3.350;-46.1
3.35 =461

FPPRINT 791.123456789
791.12345468

PPRINT —=12.7E-3;0.04
=.0127 .64

>PRINT .0000000001978531
1.97853€E-10

>PRINT -98.77E21
-5.877E+22

>PRINT 736.400E10
T.364E+12

>PRINT 12,36587E-15
1.23659E-14

SPRINT 1.25E-9;-43.6E12
1.25€E-09 -4.36E+13

>PRINT .76E126;81E-115
7. 6E+%x B _NE-s*

11-66

User's Reference Guide

PRINT

Print-Separators

Each screen line used with the PRINT statement has 28 character
positions numbered from left to right (1-28). Each line is divided
into two 14 -character print zones. By using the print-separators and
the tab-function, you can control the position of the print-items
displayed on the screen.

There are three types of print-separators: semicolons, colons, and
commas. At least one print-separator must be placed between
adjacent print-items in the print-list. Multiple print-separators may
be used side by side and are evaluated from left to right.

The semicolon print-separator causes adjacent print-items to print
side by side with no extra spaces between the values. In the
program on the right, the spaces after the numbers appear only
because all numbers are printed with a trailing space regardless of
the type of print-separator used.

The colon print-separator causes the next print-item to print at the
beginning of the next line.

Print lines are divided into two zones. The first zone begins in
column 1 and the second begins in column 15. When the computer
evaluates a comma print-separator, the next print-item is printed at
the beginning of the next zone. If it is already in the second print
zone when a comma print-separator is evaluated, the next print-item
is begun on the next line.

Examples:

>PRINT ”A": :rrBll

A

B

>*NEW

>100
»>110
>120
>130
>140
150
>RUN

-26

A=-26
8=-33
C3="HELLQ"

DE="HOW ARE YOU?"
PRINT A;B;(C3;D%
END

-33 HELLOHOW ARE YQU?

*% DONE *#*

>NEW
>100 A==26
>110 B$="HELLO"
>120 C3="HOW ARE YOU?"
>130 PRINT A:BS: (S
>14¢ END
>RUN
-26
HELLD
HOW ARE YOU?
£% DONE *=*
SNEW
>100 A$="ZONE 1"
>110 @$="ZI0ONE 2"
>120 PRINT A$,B%
>130 PRINT A$:,B%,A$
>140 END
SRUN
ZONE 1 Z0NE 2
ZONE 1
70NE 2
ZONE 1
*% DONE %%

User's Reference Guide

[1-67

PRINT

Tab-Function

The tab-function specifies the starting position on the print-line for
the next print-item. The format of the tab-function is:

TAB (numeric-expression)

The numeric-expression is evaluated and rounded to the nearest
integer n. If n is less than one, then its value is replaced by one. If
n is greater than 28, then n is repeatedly reduced by 28 until

1 = n =28 If the number of characters already printed on the
current line is less than or equal to n, the next print-ftem is printed
beginning in position n. If the number of characters already printed
on the current line is greater than n, then the next item is printed on
the next line beginning in position n. Note that the tab-functionis a
print-item and thus must be preceded by a print-separator, except
when it is the first item in the print-list. The tab-function must also
be followed by a print-separator, except when it is the last item in
the print-list. The print-separator before a tab-function is evaluated
before the tab-function, and the print-separator following the tab-
function is evaluated after the tab-function. Thus, you should use a
semicolon print-separator before and after the fab-function for best
results.

In the program on the right, the computer does the following:

B line 120 — prints A, moves to position 15, prints B

B line 130 — prints A, moves to the next print zone (in this
case, position 15 of the current screen line), prints B

B line 140 — prints A, moves to position 15 as specified in
the tab-function, moves to the next print zone because of
the comma (in this case position 1 of the next screen line),
prints B

B line 150 — moves to position 5, prints A, moves to position
6 of the next line (since position 6 of the current line was
already past when A was printed), prints B

B line 160 — prints A, subtracts 28 from 4 3 to begin the tab-
function within the allowable character positions, moves to
position 15 (43 —28=15), prints B

Examples:

>*NEW

>100 A=23.5
>110 B=48.6
>120 MSGS="HELLOD"
>130 REM N>28
>140 PRINT TAB(5);M5G63;TAB(33
};M56%
>150 REM (HARACTERS ALREADY
PRINTED<=N
>160 PRINT A;TAB(10);8
>170 REM CHARACTERS ALREADY
PRINTED>N
>180 PRINT TAB(3);A;TAB{(3);8B
>190 END
>RUN
HELLU
HELLO
23.5 48.6
23.5
48.6

% DONE ++

>*NEW

>100 A=326
>110 B=79
>120 PRINT A;TAB(15);B
>130 PRINT A,B
>140 PRINT A;TAB(15),8
>150 PRINT TAB(S5);A;TAB(6);B
>160 PRINT A;TAB(43);B
170 END
RUN
324 79
326 79
326
79
126
79
3264 79

% DONE =#=%

[1-68

User’s Reference Guide

PRINT

A print-item will not be split between two screen lines unless the
print-item is a string with more than twenty-eight characters. In
that case the string is always begun on a new line and is printed
with twenty-eight characters per line until the entire string is
printed. If a numeric print-item is such that the only character not
able to fit on the current line is a trailing space, then the number
will be printed on the current line. If the number itself will not fit on
the current line. it is printed on the next line.

The print-list may end with a print-separator. If the print-list is not
terminated by a print-separator (line 130), the computer considers
the current line completed when all the characters produced from
the print-list are printed. In this case the first print-item in the next
PRINT statement (line 140) always begins on a new line.

If the print-list ends with a print-separator (line 140), then the print-
separator is evaluated and the first print-item in the next PRINT
statement (line 160) will start in the position indicated by the print-
separator.

You may use a PRINT statement with no print-fist. When such a
PRINT statement is performed, the computer advances to the first
character position of the next screen line. This has the effect of
skipping a line if the preceding PRINT statement has no print-
separator at the end.

Examples:

>NEW

>100 A=23767

>110 B=79856

>120 C=A+B

>130 D=B-A

>140 PRINT A;B;C;D

>150 PRINT “A=";A;"B=";B;"C="

sE;"D=E";D
>160 END
>RUN
23767 79856 103623 56089

p= 23767 B= 79856 C= 103623
D= 56089

*% DONE **
>NEW

>100 A=23

>110 B=5397

>120 PRINT A,

>130 PRINT B

>140 PRINT A;B;

>150 =468

>140 PRINT C

>170 END

>RUN _
23 597
23 597 468

% DONE x%

>NEW

>100 A=20
>110 PRINT A
>120 PRINT
»>130 B=15
>140 PRINT B
>150 END
>RUN

20

15
** DONE =%
>NEW

*100 FOR J=1 TOD 2
>110 FOR I=1 T0 3
>120 PRINT I;
>130 NEXT 1
>140 PRINT
»>150 NEXT J
>160 END
>RUN

1 2 3

1 2 3

x* DONE W+

User's Reference Guide

I1-69

DISPLAY

DISPLAY (print-list|

The DISPLAY statement is identical to the PRINT statement when
you use it to print items on the screen. The DISPLAY statement
may not be used to write on any device except the screen. For a
complete discussion of how to use this statement, follow the
instructions for the PRINT statement.

Examples:

>NEW

>100 A=35.6
>110 B%="HI!
>120 C=49.7
>130 PRINT B
>140 DISPLAY
>150 END
>RUN

HI!!

35.6 49.7
HI!!

35.6 49.7

*% DONE *w

P
H

$:4;C
BS$:A;C

11-70

User's Reference Guide

Color Graphics and Sound

Introduction

A special set of subprograms has been built into the T conmputer
to provide color graphics, sound, and other capabilities not
usually found in BASIC.

Whenever you want to use one of these special subprograms. you
call for it by name and supply a few specifications. The subprogram
then takes over. performs its task, and provides vou with such
things as musical tones, screen colors, and special graphics
characters. These features are particularly useful when you are
programiming simulations. graphs. patterns on the screen. or your
own "computer music.” All of the subprograms may be used in
Command Mode as well as in programs.

The built-in subprograms can be grouped according to their
function:

B INPUT subprograms — GCHAR, JOYST, KEY

B OUTPUT subprograms ~ CLEAR, HCHAR, VCHAR,
SOUND., SCREEN

B INTERNAL subprograms — CHAR, COLOR (the results
of these subprograms aren't evident until you use an
OUTPUT operation to see the results on the screen).

The graphics subprograms feature a 24-row by 32-column screen
display. The 28 print positions normally used in T1 BASIC
correspond to columns 3 through 30, inclusive, in the graphics
subprograins. Because some display screeus may not shiow the two
leftmost and two rightmost characters. your graphics may be more
satisfactory if you use columns 3 through 30 and ignore columns 1
and 2 on the left and 31 and 32 on the right. Experiment with
different line lengths to determine how many positions show on
your screer.

User's Reference Guide

I1-71

CLEAR subprogram

CALL CLEAR

The CLEAR subprogram is used to clear (erase) the entire screen.
When the CLEAR subprogram is called, the space character {code
32) is placed in all positions on the screen.

When the program on the right is run, the screen is cleared before
the PRINT statements are performed.

If the space character {code 32) has been redefined by the CALL
CHAR subprogram, the screen will be filled with the new
character, rather than with spaces, when CALL CLEAR 15
performed.

Examples;

>PRINT "HELLO THERE!"
HELLO THERE!
>CALL CLEAR

-=-screen clears

>NEW

>100 CALL CLEAR

>110 PRINT "HELLO THERE!"
>120 PRINT “HOW ARE YQuU?"
»>130 END

>RUN

--screen clears

HELLO THERE!
HOW ARE YOU?

*k DONE **

>NEW

>100 CALL CHAR(32,"010307CFIF
IFTFFF™)

>110 CALL CLEAR

>120 GOTD 120

>RUN

-=-screen will be fitled
with 4

{Press CLEAR to stop
the program)

H-72

User's Reference Guide

COLOR subprogram

CALL COLOR (character-set-number, foreground-color-code, background-color-code)

The COLOR subprograin provides a powerful design capability by
allowing you to specify screen character colors. {To change the
screen color itself, see the SCREEN subprogram.) The
character-set-number, foreground-color-code, and background
color-code are numeric expressions.

Each character displayed on your computer screen has two colors.
The color of the dots that make up the character itself is called the
foreground color. The color that occupies the rest of the character
position on the screen is called the background color. Sixteen colors
are available on the T1 computer, so your entries for foreground
and background color must have a value of 1 through 16. The

color codes are given in the table below:

Color Code Color
1 Transparent
2 Black
3 Medium Green
4 Light Green
5 Dark Blue
6 Light Blue
7 Dark Red
8 Cyan
9 Medium Red
10 Light Red
11 Dark Yellow
12 Laght Yellow
13 Dark Green
14 Magenta
15 Gray
16 White

If transparent (code 1) is specified, the present screen color

shows through when a character is displayed. Until a CALL
COLOR is performed, the standard foreground-cofor is black
(code 2) and the standard background-cofor is transparent (code 1)
for all characters. When a breakpoint occurs, all characters

are reset to the standard colors.

Examples:

>NEW

>1040 CALL CLEAR

>110 INPUT "FOREGROUND?":¥f
>12¢ INPUT "BACKGROUND?":B
>130 CALL CLEAR

>140 CALL COLDR(2,F,B)
>150 CALL HCHAR(12,3,42,28)
>160 60 T0 110

PRUN

--screen clears

FOREGROUND?2
BACKGROUND?14

--screen clears

{28 black asterisks with
a magenta background)

ARFERERXEEXEAFNAFF AR NEERXEXS

FOREGROUND?

\, A

{Press CLEAR to stop
the program)

>*NEW

>100 CALL CLEAR

2110 CALL SCREEN(1Z)

>120 CALL COLOR(2,1,7)
>130 CALL HCHAR(12,3,42,28)
>140 6OTO 140

RUN

--gscreen clears
{transparent asterisks with

a dark-red background on a
Light-yellow screen)

PR R TR SRR EEE L L LR R RS

{Press CLEAR to stop
the program)

User's Reference Guide

11-73

COLOR subprogram

To use CALL COLOR you must also specify to which of sixteen Examples:
character sets the character you are printing belongs. The list of
ASCII character codes for the standard characters is given in the
Appendix. The character is displayed in the color specified when
you use CALL HCHAR or CALL VCHAR. The character-set-
numbers are given below.

Set Number Character Codes
1 32-39
2 40-47
3 48-55
4 56-63
5 64-71
6 72-79
7 80-87
8 88-05
9 96-103
10 104-111
11 112-119
12 120-127
13 128-135
14 136-143
15 144-151 -
16 152-159
Note that all 24 rows and 32 columns are filled with the space >NEW
character until you place uther characters in some of these 5100 CALL CLEAR
positions. If you use character set 1 in the CALL. COLOR >110 CALL CDLORC1,16,14)
statement, all space characters on the screen are changed to the ;:'I gg E:t:: 32%5’(‘52?;’35’2“
background-color specified since the space character is contained in >140 GOTOD 140
set 1. This change is demonstrated by the program on the right. ?RUN

-=-screen clears

--24 white #'s with
a magenta background on a
dark—green screen

oA o3 oA I AT | I | W W

. ___J

--Note that the screen color__
appears only at the top a
bottom of the screen

(Press CLEAR ta stop
the program)

[1-74 User's Reference Guide

SCREEN subprogram

CALL SCREEN (color-code) Exampies:

The SCREEN subprogram enhances the graphic capabilities of the
T1 computer by allowing you to change the screen color. The
standard screen color while a program is running is light green
(color-code = 4).

The color-code is a numeric expression which, when evaluated, has >NEW
a value of 1 through 16. The table of the sixteen available colors 5100 CALL CLEAR
and their Codes iS given belOW. >110 INPUT “SCREEN COLCR?":S
120 INPUT "FOREGROUND?":F
Color-code Color >130 INPUT "BACKGROUND?":B
>140 CALL CLEAR
1 Transparent >150 CALL SCREEN(S)
2 Black >160 CALL COLOR{(2,F,B)
. > 4
3 Medium Green ke corg hoprnile.dsec,28
4 Light Green >RUN
5 Dark Blue .
. ==SCcreen cLears
6 Light Blue
7 Dark Red SCREEN COLOR?7
FOREGROUND?13
8 Cyaq BACKGROUND?16
9 Medium Red
10 Light Red --screen clears
1 D,ark Yellow --28 dark=-green asterisks
12 Light Yellow with a white backaground on
13 Dark Green a dark=red screen
14 Magenta . 1
15 Gray
16 White
When the CALL SCREEN is performed, the entire screen
background changes to the color specified by the cofor-cade. All FEAFEFFEFERI RSN ARNERAIER AN

characters on the screen remain the same unless you have specified
a transparent foreground or background color for them. In that
case, the screen color "shows through™ the transparent foreground

or background. L SCREEN COLOR? y

The screen is set to cyan (code 8) when a program stops for a (Press GLEAR 10 510p
breakpoint or terminates. If you CONTINUE a program after a the program)
breakpoint, the screen is reset to the standard color (light green).

User’s Reference Guide I1-75

CHAR subprogram

{Character definition)

CALL CHAR(char-code, "pattern-identifier’}

The CHAR subprogram allows you to define your own special
graphics characters. You can redefine the standard set of characters
(ASCII codes 32-127) and establish additional characters with
codes 128-159.

The char-code specifies the code of the character you wish to define
and must be a numeric expression with a value between 32 and
159, inclusive. If the character you are defining is in the range 128-
159 and there is insufficient free memory to define the character,
the program will terminate with a "MEMORY FULL" error.

The pattern-identifier is a 16-character string expression which
specifics the pattern of the character you want to use in your
program. This string expression is a coded representation of the 64
dots which make up a character position on the screen. These 64
dots comprise an 8-by-8 grid as shown beluw, greatly enlarged.

LEFT RIGHT
BLOCKS | BLOCKS

ROW 1
ROW 2
ROW 3
ROW 4
ROW 5
ROW 6
ROW 7
ROW 8

Each row is partitioned into two blocks of four duts cacl

anyrow L1 1T T i 1113
| | 1

LEFT RIGHT
BLOCK BLOCK

Examples:

>NEW

>100 CALL
>110 CALL

FFFFFF'")
>120 CALL
>13¢ CALL
*140 GDTOD
>RUN

==s5cCcreen

CLEAR
CHARC3Z,"FEFFFFFFFF

COLORC1,9,6)
VCHAR(12,16,33)
140

clears
[|

(Press CLEAR to stop

the program)

[1-76

User’s Reference Guide

CHAR subprogram

Each character in the string expression describes the pattern of
dots in one block of a row. The rows are described from left to right
and from top to bottom. That is, the first two characters in the
string describe the pattern for row one of the dot-grid. the next two
describe row two, and so on.

Characters are created by turning some dots “on” and leaving
others "off.” The space character (code 32) is a character with all
the dots turned "off.” Turning all the dots “on” produccs a solid

block (m}.

All the standard characters are automatically set so that they turn
“on” the appropriate dots. To create a new character. you must tell
the computer what dots to turn on or leave off in each of the 16
blocks that contain the character. In the computer a binary code is
used to specify what dots are on or off within a particular block.
However, a "shorthand” method called hexadecimal, made up of
numbers and letters, is used to control the on/off condition. The
table that follows contains all the possible on/oft conditions for the
dots within a given block and the hexadecimal notation for each
condition.

Binary Code Hexadecimal
Blocks (0=0ff; 1=0n) Code

0000 0
(3001
0010
0011
(100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MO0 > 000~ th &K -

Note: The hexadecimal codes A, B, C, D, E and F must be
entered from the keyboard as upper-case characters.

User’s Reference Guide

11-77

CHAR subprogram

To describe the dot pattern pictured below you would code this
string for CALL CHAR:

"1898FF3D3C3CE404"

LEFT RIGHT BLOCK
BLOCKS BLOCKS CODES

ROW 1 18
ROW 2 98
ROW 3 FF
ROW 4 3D
ROW 5 3C
ROW 6 3C
ROW 7 E4
ROW 8 04

If the string expression is less than 16 characters, the computer will
assume that the remaining characters are zero. If the string is
longer than 16 characters, the computer will ignore the excess.

Remember that CALL CHAR only defines a character. To display
the character on the screen you will need to use CALL HCHAR,
CALL VCHAR, PRINT, or DISPLAY. When CALL CHAR is
performed, any character already on the screen with the same
char-code is changed to the new character.

Examples:

>NEW

>100 CALL CLEAR

>110 A$="189BFF3D3C3ICE4AG4"
>120 B$="1819FFBC3C3C2720"
> 130 CALL CHAR(128,A%)

> 140 CALL CHAR{129,B%)

> 150 CALL COLOR(9,7,12)

> 160 CALL VUHAK(1Z,16,128)
>170 FOR DELAY=1 TO 500

> 180 NEXT DELAY

> 190 CALL VCHAR(12,%6,129)
» 200 FOR DELAY=1 TO 500
>210 NEXT DELAY

>220 GOTO 140

>2Z30 END

> RUN

--s¢reen clears

--character moves back and

forth
(I'ress CLEAR to stop
the program)

> NEW

> 100 CALL CLEAR

>110 CALL CHAR(128,"0103070F1
F3F7FFF™)

> 120 PRINT CHR$(128)

~ 130 END

> RUN

-=5Creen clears
F|

** QONE **

1I-78

User's Reference Guide

CHAR subprogram

If a program stops for a breakpoint, those characters redefining Examples:

codes 32-127 are reset to their normal representation. Those

with codes 128-159 are unchanged. When the program ends > NEW

either normally or because of an error, all redefined characters

are reset and any characters assigned to codes 128-159 are reset ~ 100 CALL CLEAR

to be undefined. > 110 CALL CHAR(128,"FFFFFFFFF
FFFFFFF")

> 120 CALL CHAR(47,"0FOFQFQFOT

OFQFOF")

> 130 CALL HCHAR{12,17,42)
> 140 CALL HCHAR{14,17,128}
> 150 FOR DELAY=1 to 350

> 160 NEXT DELAY

> 170 END

> RUN

--screen clears

' N
i
n

- >

f N
*
n

*% DONE *%*
e —

> CALL HCHAR{24,5,42)

*

User's Reference Guide [I-79

HCHAR subprogram

(Horizontal character repetition)

CALL HCHAR (row-number, column-number, char-code |.number-of-repetitions|)

The HCHAR subprogram places a character anywhere on the
screen and, optionally, repeats it horizontally. The row-number and
column-number locate the starting position on the screen. The row-
number, column-number, char-code, and number-ofrepetitions are
NUMETIC eXpressions.

If the evaluation of any of the numeric expressions results in a non-
integer value, the result is rounded to obtain an integer. The valid
ranges are given below:

Value Range

Row-number 1-24, inclusive
Column-number 1-32. inclusive
Char-code 0-32767, inclusive
Number-ofrepetitions 0-32767, inclusive

Examples:

>CALL CLEAR
-~-screen clears

>CALL HCHAR(10,1,72,50)

- ™)

HHHHHHHHHHHHHHHHHHHHEHHHHHHHH
HHHHHHHHHHHHHHHHH

¥CALL HCHMARC10,1,72,50)

\ v

PNEW

>100 CALL CLEAR

>110 FOR §=2 T0 16

120 CALL cOLOR(S,S5,.S)

>130 NEXT S

>140 CHR=40

>150 FOR X=8 70 22

>160 CALl VCHAR(C4,X,.CHR.15}
>170 CALL HCHAR(X-4,8,CHR,13)

>180 CHR=CHR+8
>190 NEXT X
>200 GOTO 140
?RUN

-=gscreen clears

--makes a pattern on the
screen using various COLORS

{Press CLEAR to stop
the program)

I1-80

User's Reference Guide

HCHAR subprogram

A value of 1 for row-number indicates the top of the screen. A value
of 1 for column-number indicates the left side of the screen. The
screen can be thought of as a “grid” as shown here.

COLUMNS

3 4 6 R 10 12 14 s 1K 20 22 24 2In 28 30 32
babsthredbolndnbistizbedlatabastariaotbal

1 3

1y—

11

12—+

NEOX

13

14—~

15

Lo—

17

18—
10

2)—=

21

22-+

23

24—

Because columns 1, 2, 31, and 32 may not show on your screen,
you may want to use only column-numbers 3 through 30.

Although you may specify a value as large as 32767 for char-code.
the computer will convert the value specified to a range of 0
through 255. Character codes 32 through 127 are defined as the
standard ASCII character codes. Character codes 128 through
159 may be defined using the CHAR subprogram. If you specify
an undefined character for char-code, you get whatever is in
memory at the time the HCHAR subprogram is called.

>CALL HCHAR{24,14,29752)
8
>CALL HCHAR{Z24,14,35)
#
SCALL HCHAR(24,14,132)
--displayed character depends

pn what is in memory now

User's Reference Guide

[1-81

HCHAR subprogram

To repeat the specified character, enter a value for the number-of
repetitions. The computer will display the character beginning at
the specified starting position and continue on the left side of the
next line. If the bottom of the screen is reached, the display will
continue on the top line of the screen. You should use 768 for
number-of-repetitions to fill all 24 rows and 32 columns. Using a
number larger than 768 will unnecessarily extend the time required
to perform this statement.

Examples:

>NEW

>100 CALL CLEAR

>110 FOR I=% TO 15

>120 CALL HCHARCI,13,36,6)
>130 NEXT I

>140 60T0 140

>RUN

-—screen clears

r Y
3535359
355833
$353858%
3333588
$3355%83
$3535%
335583
Y y
{Press CLEAR to stop
the program}

[1.82

User’s Reference Guide

VCHAR subprogram

(Vertical character repetition)

CALL VCHAR (row-number, column-number, char-code [.number-of-repetitions!)

The VCHAR subprogram performs very much like the HCHAR Examplas:
subprogram except that it repeats characters vertically rather than >CALL CLEAR
horizontally. The computer will display the character beginning at
the specified position and continuing down the screen. If the bottom
of the screen is reached, the display will continue at the top of the >CALL VCHAR(2,10,86,13)

next column to the right. If the right edge of the screen is reached. r— ™\
the display will continue at the left edge. Sce the HCHAR
subprogram for more details.

-=gscreen clears

L i - e

| cALL VCHAR(2,10,86,13)

NEW

>100 CALL CLEAR

>110 FOR I=13 70 18

>120 CALL VCHAR(9,1,36,6)
»>130 NEXT I

>140 GOTO 140

>RUN

-— screen ¢lears
[A
$358%8383
$533%5%
355558
355955

$5353E5
5555388

. _

{Press CLEAR to stop
the program)

User's Reference Guide I1-83

SOUND subprogram

CALL SOUNDyduration, frequencyl, volumell, frequency 2, volume2ll frequencyd, volume3 frequency4, volumed)

The SOUND subprogram tells the computer to produce tones of
different frequencies. The values you include control three aspects
of the tone:

M duration — how long the tone lasts.
B frequency — what tone actually plays.
W vo/ume - how loud the tone is.

The duration, frequency, and volume are numeric expressions. I the
cvaluation of any of the numeric cxpressions results in a non integer
value, the result is rounded to obtain an integer. The valid ranges

for each of these are given in the table and discussed further below.

Value Range
duration 1 to 4250, inclusive
-1 to —4250, inclusive
frequency (Tone) 110 to 44733, inclusive
(Noise) —1 to —8, inclusive
vofume 0 (loudest} to 30 (quietest), inclusive
Duration

The duration you specify is measured in milliseconds. One second is
equal to 1000 milliseconds. Thus, the duration ranges from .001 to
4.25 seconds. (The actual duration may vary as much as 1/60th of
a second.) The duration you specify applies to each sound generated
by a particular CALL. SOUND statement.

In a program, the computer continues performing program
statements while a sound is being played. When you call the
SOUND subprogram, the computer will wait unti} the previous
sound has been completed before performing the new CALL
SOUND statement unless a negative durations specified. 1f you
specify a negative duration in the new CALL SOUND statement,
the previous sound is stopped and the new one is begun
immediately.

Exampiles:

>CaLL SOUND(100,294,22

--plays a single tnne

>NEW

>100
>119
*12¢
>130
>140
>130
>RUN

TONE=110

FOR €cOUNT=1 TO 10

cALL SOuUND{-500,TONE,T1)
TONE=TONE+110

NEXT COUNT

END

-- plays ten tones quickly

*% DONE *%

>120

>RUN

cALL SOUND{+500,TONE, 12

-=plays ten tones slowly

*x DONE **

I1-54

User's Reference Guide

SOUND subprogram

Frequency

The frequency you specify may be either a tone or a noise. The
tones, measured in Hertz (one cycle per second, |Hzl), can be
specified from a low-pitch of 110 Hz to a high pitch of 44733 Hz,
well above human hearing limits. (The actual frequency produced
may vary from zero to ten percent depending on the

frequency.) The frequencies for some common musical notes are
given in the Appendix.

If a negative value for freguency is specified, a noise, rather than a
tone, is produced. The noise is either "white noise” or "periodic
noise.” The noise associated with each value is given in the table
below. Since it is difficult to describe the difference between noises,
you can try out the different noises yourself to hecome farmliar with
each one.

Noise Characteristics

Frequency

Value Characteristic
-1 "Periodic Noise” Type 1
-2 "Periodic Noise™ Type 2
-3 "Periodic Noise” Type 3
—4 "Periodic Noisc™ that varics with the

frequency of the third tone specified

=5 “"White Noise™ Type 1
-0 "White Noise” Type 2
-7 "White Noise” Type 3
-8 “"White Noise™ that varies with the

frequency of the third tone specified

A maximum of three tones and one noise can be activated
simuitaneously. For each tone or noise specified. its volume must
be indicated immediately following the tone or noise.

Examples:

>CALL SOUND(1000,440,2)

--plays a single tone

>CALL SOUND(500,-1,2)

~-plays a single noise

>NEW

>100 FOR NOISE=-1 TO -8 STELP
-1

>110 CALL SOUNDC1Q00,NODISE,2)
2120 NEXT NOISE

>130 END
>RUN

-=all 8 different noises
are generated

*xx DONE ==

>CALL SOUND(2000,-3,5)

~=plays a single nuise

>CALL SOUND(2500,440,2,65%,5,
88¢,10,-6,15)

--plays 3 tones and 1 noise

>DUR=2500

>v0L=2

>r=262

>E=330

>5=392

>CALL sOuNp(DuR,C,VOL,E,VDL,G
SvoL?

-~produces a (=major cthord

User's Reference Guide

11-85

GCHAR subprogram

(Get character)

CALL GCHAR (row-number,column-number,numeric-variable)

The GCHAR subprogram allows you to read a character from
anywhere on the display screen. The position of the character you
want is described by row-number and column-number. The
computer puts the ASCII numeric code of the requested
character into the numeric-variable you specify in the CALL
GCHAR statement.

The row-number and cofumn-number are numeric expressions. If
the evaluation of the numeric expressions results in a non-integer
value, the result is rounded to obtain an integer. A value of 1 far
row-number indicates the top of the screen. A value of 1 for column-
number specifies the left side of the screen. The screen can be
thought of as a "grid” as shown here.

COLUMNS

4 o 8 1w 12 14 16 18 20 X2 24 20 3 30 32
| {

2 :
1t 3bsisdtedbnbtwtbistizbwedanbaadbasdartae b

14—

12—+

13

wEOX

14~

15

thH—

17

19

2() —

21

22—

24—~

Examples:

NEW

>100 CALL CLEAR

>110 CALL HCHARC1,1,36,768)
>120 CALL GCHAR(S5,10,X%)
>130 CALL CLEAR

>140 PRINT X

>150 END

>RUN

--screen clears

--screen fills with $%%
(code 36)

--gcreen clears
36

*% DBINE *%

1I-86

User's Reference Guide

KEY subprogram

CALL KEY (key-unit, return-vartable, status-variable)

The KEY subprogram allows you w transfer one character from

the keyboard directly to your program. This eliminates the need for

an INPUT statement and saves time in getting data from a single
key into memory. Because the character represented by the key
pressed is not displayed on the screen, the information already on
the screen is not disturbed by performing the CALL KEY
statement. The key-unit, which indicates which keyboard is the

input device, is a numeric expression which, when evaluated, has a

value 0 through 5, as shown below:

B 0 == console keyboard, in mode previously specified by
CALL KEY

B 1 — left side of console keyboard or remote control 1

B 2 = right side of console keyboard or remote control 2

W3, 4, 5 = specific modes for console keyboard

A key-unit of 0 remaps thc kcyboard in whatever mode was
specified in the previous CALL KEY program line.

Key-units of 1 and 2 are used for a split-keyboard scan. when you
want to separate the console keyboard into two smaller duplicate
keyboards or when you are using the remote controller
firebuttons as input devices.

Specifying 3. 4, or 5 as key-unit maps the keyboard to a
particular mode of operation. The keyboard mode you specify
determines the character codes returned by certain keys.

A key-unit of 3 places the computer in the standard TI-99/4
keyboard mode. (Most Command Maodule software uses this
mode.) In this mode, both upper- and lower-case alphabetical
characters are returned by the computer as upper-case only, and
the function keys (BACK,BEGIN,CLEAR, ctc.) return codes 1
through 15. No control characters are active.

A key-unit of 4 remaps the keyboard in the Pascal mode. Here,
both upper- and lower-case alphabetical character codes are
returned by the computer, and the function keys return codes

ranging from 129 through 143. The control character codes are 1
through 31.

A key-unit of 5 places the keyboard in the BASIC mode. Both
upper- and lower-casc alphabetical character codes are returned
by the computer. The function key codes are 1 through 15, and
the control key codes are 128 through 159 (and 187).

Examples:

User's Reference Guide

11-87

KEY subprogram

The return-variable must be a numeric variable. The computer will
place in return-variable the numeric character code represented by
the key pressed. If the unit used is the console keyboard (unit 0},
the character codes are the normal ASCII codes and may range
from 0-127. If you are using the split keyboard {unit 1 and/or

unit 2), the character codes will be 0 through 19.

The status-variable is a numeric variable which serves as an
indicator to let you know what happened at the keyboard. The
computer will return one of the following codes to the status-
variable after performing the CALL KEY routine:

@ +1 = anew key was pressed since the last performance
of the CALL KEY routine

B —1 = the same key was pressed during the performance
of CALL KEY as was pressed during the previous
performance

B 0 = no key was pressed

You can then check this status indicator in your program to
determine what action to take next, as shown in line 110 of the
program on the right. Line 110 is a test that gives you time to
find and press a different key before the computer continues on to
the next statement.

The following diagrams illustrate the control and function key
codes returned in the various keyboard modes.

Key-unit = | Keyumt = 2

o]
-~

-

-

~

mew

L

-

o
m—————fe—
1
1

=

L

-~

[xe

(7 Jin)

-

o

"]
as
mm
m
rt

m———

ENTER

- >
4]
c
hul
@
P-':"-'
<
x
-

SHIFT Z X [W B BHIFT

—————
=
o=

14 13

ALPHA
wank | oTAL SPACE FOTN

Figure 1. Spiit Keyboard Scan.
Codes returned = 0 through 19,

>NEW

>100 CALL KEY(Q,KEY,3TATUS)

>110 IF STATUS=0 THEN 100

>120 NOTE=KEY-64

>130 ON NOTE GOTO 250,270,150
,170,1%0,210,230

>»140 6070 100

>150 NOTE=262

»160 6070 280

>170 NOTE=2%4

>180 6070 280

>190 NOTE=330

»200 GOTO 280

>210 NOTE=349

»>220 GOTO 280

>230 NOTE=392

>240 GOTO 280

250 NOTE-440

>260 GOTO 280

>270 NOGTE=494

>280 CALL SOUNDCIQOQ,NQOTE,Z22

>290 GOTO 100

>RUN

~~plays a different ncte on
the scale as you press
the corresponding key (A-G)

[Press CLEAR to stop
the program)

11-88

User's Reference Guide

KEY subprogram

3 2 14 iz 1 15 3
1 2 4 5 b 7 8 E| 0 =
11
e} W 1 R 1 Y u 1 Q P /
a 9 13
A s D F G H J K L H ENTER
10
SHIFT z x [W B N vt 3 SHIFT
ALPHA
LOCK, CTRL SPACE FCTN
Figure 2. Standard TI1-99/4 Keyboard Scan.
Key-unit = 3. Both upper- and lower-case
alphabetical characters returned as upper-case.
Function codes = 1 through 15.
No control characters active.
131 132 135 130 142 140 128 134 143 133
1 2 34 4 =] <] 7 B 9 0 =
30 a 29
138
a W E H T ¥ v I 0] /
17 23 5 18 20 25 21 a 18 16
136 137 141
A S D F G H J K L : ENTER
1 19] -] 7 a 10 11 12 28
138
SHIFT 4 X C W B N M . - SHIFT =
43 ea 3 o2 2 14 13 z27
ALPHA
LOCK CTAL SPACE FCIN
Figure 3. Pascal Keyhoard Scan.
Key-unit = 4, Upper- and lower-case characters active.
Function codes = 129 through 143,
Control character codes = 1 through 31.
3 4 7 2 14 12 1 1 13 L
1 =] a3 4 o =] 7 =3 a a -
158 159 157
1
o W E R 4 Y u ! 0 P /
145 181 133 14e 148 153 148 137 143 144 1B7Y
8 2 13
A & 3] F G H J K L ; ENTER
1g9 | 147 | 132 | 134 | 1as | 138 | 138 | 139 | 140 | 138
10
SHIFT z X c v B N M } . SHIFT
154 152 131 150 130 142 141 128 158
ALPHA
Lock | iR SPAGEC =
Figure 4. BASIC Keyboard Scan.
Key-unit = 5. Upper- and lower-case characters active.
Function codes = 1 through 15.
Control character codes = 128 through 159, 187
Users Reference Guide

[1-89

JOYST Subprogram

CALL JOYST (key-unit,x-return,y-return)

The JOYST subprogram allows you to input information to the
computer based on the position of the lever on the Wired Remote
Controllers accessory {available separately).

The key-unitis a numeric expression which, when evaluated, has a
value of 1 through 4.

B 1 =controller 1
B 2 =controller 2
B 3. 4,and 5 = specific modes for console keyboard

Specifying a key-unitof 3, 4, or 5 maps the console keyboard to a
particular mode of operation, as explained in the "KEY
subprogram” section. If key-unit has a value of 3. 4, or 5, the
computer will not properly detect input from the remote
controllers.

Numeric varables must be used for x-refurn and y-refurn. The
subprogram assigns an integer value of —4, +4, or 0 to each of
these variables, based on the position of the joystick at that time, as
shown below. The first value in parentheses is x-return and the
second value 1s yreturn.

(0.4)

{(—4.4)

(4.4)

{—=4.0) (4,0)

(—4,-4) (4,—4)
(0,—4)
You may then use these values in your program by referring to the
variable names.

You will find more detailed instructions in the manual enclosed with
the optional remote controls.

“NEW

>100
>110

CALL CLEAR
CALL CHARRC4Z,“FFFFFFFFFF

FFFFFF™)

>120¢
>13¢
>140
>150
>14Q
>170
>180
>190
>200
>210
>RUN

INPUT "SCREEN COLOR?":S
INPUT “BLULK COLOR?":F
CALL CLEAR

CALL SCREEN(S)

CALL COLORCZ,F,1)

CALL JOYST(2,X,Y)
A=X#2.2+16.6

B=Yrl. 64122

CALL HCHARCE,A,42)

GOTU 170

--screen clears

SCREEN COLOR?14
BLOCK COLOR??

==-screen clears

-~color bloeck will mawve
around screen as joystick
controller is maved

{Prcas CLEAR to stop
the program)

[1-00

User's Reference Guide

—

Built-iIn Numeric Functions

{ntroduction

Many special-purpose functions are built into TI BASIC. The
functions described in this section perform some of the frequently
used arithmetic operations. Obtaining the equivalent results for
these functions requires a lot of programming in BASIC. Thus, they
have been built in to TI BASIC and made easy for you to use. Built-
in functions which are used with strings are discussed in the “Built-
In String Funcrions” section. In addition to the built-in functions.
you can also define your own functions (see "User-Defined
Functions.”)

User's Reference Guide I1-91

ABS — Absolute Value

ABS(numeric-expression)

The absolutc value function gives you the absolute value of the
argument. The argument is the value obtained when the numeric
expression 1s evaluated. The normal rules for evaluating numeric
cxpressions (see "Numeric Expressions™ are used here. If the
argument is positive, then the absolute value function gives you
the argument itself. If the argument is negative, the absolute
value function gives you the negative of the argument. Thus, for
an argument, X:

BIf X =0, ABS(X)=X
BIfX <0, ABS(X)=-X
(e.g., ABS(-3) =~(-3) =3)

ATN — Arctangent

ATN(numeric-expression)

The arctangent function gives you the arctangent of the argument.
The argument is the value obtained when the numeric-expression is
evaluated. The normal rules for evaluating numeric expressions
are used here. Thus, ATN(x) gives you the angle (in radians)

whose tangent is x. If you want to get the equivalent angle in
degrees. you need to multiply the answer you get by (1807
4*ATN(1})) or 57.295779513079 which is 180/7. The value

given for the arctangent function is always in the range — 7/

2-<ATN(x)<<m/2.

Examples:

>NEW

>100 A=-27,36

>110 B=9%.7

>120 PRINT ABS{A};ABS(B)

>130 PRINT ABS(3.8);ABS{(-4.5)

>140 PRINT ABS{(-3%2)
150 PRINT ABS(Ax(B-3.2))
>160 END
>RUN
27.36 9.7
3.8 4.5
6
177.84

xx DONE *%

*NEW

>100 PRINT ATNC(.44)
>110 PRINT ATNC1E127)
>120 PRINT ATN{T1E-129);ATN(O)

>130 PRINT ATN(,3)%57,2957795
13079
>140 PRINT ATNC.3)x(180/ C4xAT
NC12))
>150 END
>RUN
4145068746
1.570796327
¢t o°
16.69924423
16.69924423

*% DONE *%*

1-02

User's Reference Guide

COS — Cosine

COS(numeric-expression)

The cosine function gives you the cosine of the argument, x, where
% is an angle in radians. The argument is the value obtained when
the numeric-expression is evaluated. The normal rules for
evaluating numeric expressions are used here. If the angle

is in degrees. multiply the degrees by #/180 to get the

equivalent angle in radians. You may use (4 *ATN(1})/180 or
0.0174 5329251994 for m/180. Note that if you enter a value of x
where | x| = 1.5707963266375*10", the message "BAD
ARGUMENT?" is displayed and the program stops running.

EXP — Exponential

EXP(numeric-expression)

The exponential function gives you the value of e*, where
e=2.718281828. The argument, x, is the value obtained when the
numeric-expression is evaluated. The normal rules for the
evaluation of numeric expressions are used here. The

exponential function is the inverse of the natural logarithm function

(LOG). Thus, X = EXP (LOG(X)).

Examples:

>NEW

>100
*>11n
*>120
>130
>140
201}
>150
>RUN
.5
.5

A=1.047197551196

R=A0

C=.017453292519%94

PRINT COSC(A);COS(B*C)
PRINT COS(B*(4*xATN{1})/1

END

.5

*%x DDONE *x

>PRINT COS(2.2E11)

* BAD ARGUMENT

*NEW

>100
>110
>120
>130
>140
>RUN

b4

A=3.79

PRINT EXPCA);EXP(9)
PRINT EXP(A=%Z)
PRINT EXP(LOG(Z2))
END

25640028 8103,083928

1958.628965

2

*x DONE %%

User's Reference Guide

[1.93

INT — Integer

INT(numeric-expression)

The integer function gives you the largest intcger that is not greater
than the argument. The argument is the value obtained when the
numeric-expression is evaluated. The normal rules for evaluating
numeric cxpressions arc used here. The integer function

always gives you the closest integer which is to the left of the
number specified on the number line. Thus, for positive numbers,
thc decimal portion is dropped: for negative numbers, the next
smallest integer value is used {i.e., INT(—2.3) = = 3). If you specify
an integer, then the same integer is given.

Examples:

>NEW

>100 B=.678

110 A=INT(B*100+.5)/100

>120 PRINT A;INT(B)

>130 PRINT INT(-2.3);INT(2.2)

>140 §TQP
>RUN

.68 0
-3 2

%% DONE %

LOG — Natural Logarithm

LOG(numeric-expression)

The natural logarithm function gives you the natural logarithm of
the number specified by the argument. The argument is the value
obtained when the numeric-expresston is evaluated. The normal
rules for the evaluation of numeric expressions are used here.
The natural logarithm of % is usually shown as: log(x). The
logarithm function is the inverse of the exponential funcrion

(EXP). Thus, X = LOGIEXP(X)).

The argument of the natural logarithm function must be greater
than zero. lf you specify a value for the argument which is less than
or equal to zero, the message "BAD ARGUMENT" is displayed,
and the program stops running.

If you want to find the logarithm of a number in another base, B.
use this formula.

logu(X) =log.(X)/log.(B)
For example, log,(3) =log.(3)/log.(10)

>NEW

>100 A=3.5
>110 PRINT LOGCAD;LQG(A*2)
>120 PRINT LOGCEXP(2))
>130 STOP
>RUN
1.252762968 1.945910149
2.

w% DONE »w

>PRINT LOG(-3)

* BAD ARGUMENT

SPRINT LOG(32/L06CT0)
LATT1212547

[1-04

User's Reference Guide

RANDOMIZE Statement

RANDOMIZE [seed

The RANDOMIZE statement 15 used 1n conjunction with the
random number function (RND). When the RANDOMIZE
statement 1s not used, the random number function will generate
the same sequence of pseudo-random numbers each time the
program is run. When the RANDOMIZE statement is used without
a seed, a different and unpredictable sequence of random numbers
is generated by the random number function each time the program
is run. If you use the RANDOMIZE statement with a seed
specified. then the sequence of random numbers generated by the
random number function depends upon the value of the seed. 1t the
same seed is used each time the program is run, then the same
sequence of numbers is generated. If a different seed is used each
time the program is run, then a different sequence of numbers is
generated. The seed may be any numeric expression. The number
actually used for the seed is the first two bytes of the internal
representation of the number. (See "Accuracy Information” in the
Appendix for a complete explanation.) Thus, it is possible that

the same sequence of numbers may be generated even if you
specify different seeds. For example. RANDOMIZE 1000 and
RANDOMIZE 1099 produce the same first two bytes internally
and thus the same sequence of numbers. If the seed you specify 1s
not an integer, then the value used is INT (seed) (see "INT-
Integer”).

Examples:

>NEW

>100
>110
»120
>130
>140
>RUN

a0 N P~ O

RANDOMIZE 23

FOR 1=1 10 5

PRINT INT(T1Q0*RNDI+1
NEXT I

STOP

*% DONE *%*

User’s Reference Guide

[1-05

RND — Random Number

RND

The random number functien gives you the next pseudo-random
number in the current sequence of pseudo-random numbers. The
random number generated will be greater than or equal to zero and
less than one. The sequence of random numbers generated by the
random number function is the same every time the program is run
unless the RANDOMIZE statement appears in the program.

If you wish to obtain random integers between two values A and B
(A<ZB), inclusive, use this formula:

INT{(B—A+1)*RND)+A

Examples:

>NEM

>100
>110
*>120
>130
>RUN

LERE T e

FOR 1=1 18 5

PRINT INT(10#RND)+1
NEXT I

END

*%x DONE *x

>NEW

>100

REM RANDOM INTEGERS

DCTWLELCN 1 AND 20,INCLUSIVE

>114Q
>120
>130
>140
>150
>RUN

11

[+]

11
B8
&

FOR I=1 TO 5
C=INT{20%RND)+1
PRINT ¢

NEXT I

END

** DONE *+

I1-96

User's Reference Guide

SGN — Signum (Sign)

SGN(numeric-expression)

‘T'he signum function gives you the algebraic sign of the value
specified by the argument. The argument is the value obtained
when the numeric-expression is evaluated. The normal rules for the
evaluation of numeric expressions are used here. T'he signum
function gives different values depending on the value of the
argument. These values are given here. For argument, X:

BX <0 SGN{X)=-1

X =0 SGN(X)=0

WX >0 SGNX)=1

SIN — Sine

SIN(numeric-expression)

The sine function gives you the sine of the argument, x, where x is
an angle in radians. The argument is the value obtained when the
numeric-expression is evaluated. The normal rules for evaluating
numeric expressions are used here. If the angle is in

degrees, simply multiply the degrees by #7180 to get the equivalent
angle in radians. You may use (4 *ATN(1))/180 or

0.0174 532925194 4 for »/180. Note that if you enter a value of x
where | x | = 1.5707963266375* 10'°, the message "BAD
ARGUMENT" is displayed and the program stops running.

Examples:

>NEW

>100
=110
>120
B2
>130

>140

>RUN
-1
-1

A=-23.7

B=6

PRINT SGNCAX;S5GN(DY;SGN(
PRINT SGN(-3%3);SGN{Bx2)
END

o 1
1

*% DONE *w

>NEW

2106
>110
>120
>130
>140
803
2150
>RUN
.5
-3

A=,5235987755982

B=30

[=.01745329251994

PRINT SINCA};SIN(B*()
PRINT SINCB*{4*ATN(1)) /]

END

-5

wkx DONE +**

>PRINT SINC1.%E12)

* BAD ARGUMENT

User's Reference Guide

11-97

SQR — Square Root Function

SQR(numeric-expression)

The square root function gives you the positive square root of the
value specified by the argument. The argument is the value
obtained when the numeric-expression is evaluated. The normal
rules for the evaluation of numeric expressions are used

here. SQR(x} is equivalent to x A(1/2). The value specified by the
argument may not be negative. If you specify a value for the
argument which is less than zero, then the message "BAD
ARGUMENT" is displayed and the program stops running.

TAN — Tangent

TAN(numeric-expression)

The tangent function gives you the tangent of the argument, x,
where x is an angle in radians. The argument is the value obtained
when the numeric-expression is evaluated. The normal rules for
evaluating numeric expressions are used here. If the angle

is in degrees, multiply the degrees by 7/180 to get the

equivalent angle in radians. You may use (4 *ATN(1)) /180 or
0.01745329251994 for n/180. Note that if you enter a value of x
where | x | = 1.5707963266375*10", the message "BAD
ARGUMENT" is displayed and the program stops running.

Examples:

>NEW

>100 PRINT SQR(4);4~(1/2)
>110 PRINT SGRC102
>120 END
>RUN
2 2
3.16227766

*% DONE %%

>PRINT SQR(-5)

* BAD ARGUMENT

>NEW

>100 A=,.7853981633973
>110 B=45
>120 £=.01745329251994
>130 PRINT TANCAX ;TANCB*C)
>140 PRINT TAN(B* (4*ATN(1))}/1
80}
>150 END
>RUN
1. 1.
1

+ DONE ++

>PRINT TANC1.76E10)

* BAD ARGUMENT

i1-o8

User's Reference Guide

Built-In String Functions

Introduction

In addition to the built-in numeric functions, many other functions
are built into TI BASIC. The functions discussed in this section are
called string functions. String functions either use a string in some
way to produce a numeric result. or the result of the evaluation ot
the function 1s a string. As you use your computer, you will ind
many ways to use the string functions described here. You can also
define your own string functions (see "User-Defined Functions™),
Note that any string function with a name that ends with a dollar
sign (e.g. CHRS$) always gives a string result and cannot be used

Il NUIMErIC eXpressions.

User's Reference Guide

[[-39

ASC — ASCII Value

ASC(string-expression)

The ASCII value function will give you the ASCII character code
which corresponds to the first character of the string specified by
the string-expression. A list of the ASCII character codes for
cach character i the standard cliaracter set is given in the

Appendix.

CHR$ — Character

ClIR$(numeric-expression)

The character function gives you the character corresponding to the
ASCII character code specified in the argument. The argument 1s
the value obtained when the numeric-expression is evaluated. The
normal rules for the evaluation of numeric expressions are used
here. lf the argument specified is not an integer, it is rounded to
obtain an integer. A list of the ASCII character codes for each
character in the standard character set is given in the Appendix.
If the argument specified is a value between 32 and 127,
inclusive, a standard character is given. If the argument specified
is between 128 and 159, inclusive, and a special graphics
character has been defined for that value, the graphics character
is given. If you specify an argument which designates an
undefined character {i.e.. not a standard character or a defined
graphics character), then the character given is whatever is in
memory at that time.

If you specify a value for the argument which 1s less than zero or
greater than 32767, the message "BAD VALUE" is displayed. and
the program stops running.

Examples:

>NEW

>100 AS="HELLO"

>110 C$="JACK SPRAT"

120 C=ASC(CS)

>130 B$="THE ASCII vALUE QF "

>140 PRINT BS$;"H IS";ASC(AS)

>150 PRINT BS$;"J IS";C

>160 PRINT BS;"N IS";ASCC"NAM
E")

>170 PRINT BS$;"1 IS";Asc("1™)

>180 PRINT CHRE(ASC(AS))

>190 END

>RUN
THE ASCII VALUE OF
THE ASCII VALUE OF
THE ASCII VALUE OF
THE ASCII VALUE OF
H

Is 72
IS 74
Is 78
IS5 49

e T

*%x DONE **

>NEW

>100 AS=CHRE(7ZIECHRE(73I}ECHR
$(33)
>110 PRINT A%
>120 CALL CHARC(97,"0103070F1F
3F7FFF™)
>130 PRINT CHRS{(32);CHR${97)
140 PRINT CHRE(3Ix14)
>150 PRINT CHRS{ASC("+"))
>160 END
>RUN

HI!

r

*

+

*% DONE *=*

>PRINT CHR$(33010)

* BAD VALUE

11-100

User'’s Reference Guide

LEN — Length

LEN({string-expression) Examples:

The length function gives you the number of characters i the string

specified by the argument. The argument is the string value PNEW

obtained when the string-expression is evaluated. The normal rules 5100 NAMES="CATHY"

for the evaluation of string expressions are used here. The length ;:;g ;;é;f::?ito"ﬂgﬁ;%“ »
of a null string is zero. Remember that a space is a character and 5130 PRINT NAMES;LEN (NAMES)
counts as part of the length. >140 PRINT CITY$;LEN(CITYS)

>150 PRINT MSG$;LEN(MSGS)
>160 PRINT LEN(NAMESECITYS)
>170 PRINT LENC"HI!™)

>180 sTOP
>RUN
CATHY 5

NEW YORK &
HELLO THERE! 12
13
3

% DONE *+

POS — Position

POS(string-1 string-2. numeric-expression) >NEwW

The position function finds the first occurrence of string-2 within >100 MSGS="HELLO THERE! HOW A

string-1. Both string-1 and string-2 are string expressions. The JEOngiNT YR POS (MSGS, H", 1
numeric-expression is evaluated and rounded, if necessary, to)
obtain an integer, n. The normal rules for the evaluation of string i}gg E’ﬁ;??c.s; POS(MSGS,CS, 1)
expressions and numeri¢ expressions are used here. The search POS(MSGS,C5,12)
for string-2 begins at the nth character of string-1. If string-2 is >140 PRINT "HI";POS(MSGS,"HL"
found, the character position within string-I of the frst character N ;()) END
of string-21s given. If string-2 is not found, a value of zero 1s SRUN
given. The position of the first character in string-! is position :E 110 19
one. If you specify a value for n which is greater than the number HI 0
of characters in string-1, a value of zero is given. If the value
x%x DONE *%

specified for nis less than zero, the message "BAD VALUE" is
displayed and the program stops running.

User's Reference Guide 11-1(1

SEGS$ — String Segment

SEG$(string-expression, numeric-expressionl, numeric-expression2)

The string segment function gives you a portion (substring) of the
string designated by the string-expression. Numeric-expression!
identifies the position of the character in the original string which is
the first character of the substring. The position of the first
character in the string specified is position one. The length of the
substring is specified by numeric-expression2. The normal rules for
the evaluation of numeric expressions and string expressions are
used here.

For this discussion, A$ is used for string-expression, X is used for
numeric-expression! and Y is used for numeric-expression2. If you
specify a value for X which is greater than the length of A$ (line
110) or a value of zero for Y (line 120), then you are given the null
string. If you specify a value for Y which is greater than the
remaining length in A$ starting at the position specified by X (line
130), then you are given the rest of A$§ starting at the position
specified by X.

If you specify a value for X which is less than or equal to zero and/
or specify a value for Y whicl is less than zero. then the message

"BAD VALUE" is displayed and the program stops running.

Examples:

>NEW

>100 MSGE="HELLO THERE! HOW A
RE vOQu?"

>110 REM SUBSTRING BEGINS IN
POSITION 14 AND HAS A LENGTH
OF 12.

120 PRINT SEGE(MSGE.14.12)

>13¢ END

>RUN

HOW ARE vQUu?

#% DBONE *%

>NEW

>100 MSG$="1 AM A COMPUTER."
»110 PRINT SEGS(MSGS$,20,1)
>120 PRINT SEGS(MS6$,10,0)
>130 PRINT SEGS(MSG$,8,20)
>140 END
>RUN

COMPUTER.

% DONE **

>PRINT SEG$(M5GS$,-1,10)

* BAD VALUE

[1-102

User's Reference Guide

STR$ — String-Number

STR$mumeric-expression)

The string-number function converts the number specified by the
argument into a string. The argument is the value obtained when
the numeric-expression is evaluated. The normal rules for the
evaluation of numeric expressions are used here. When

the number is converted into a string, the string is a valid
representation of a numeric constant with no leading or trailing
spaces. For example, if B=69.5, then STRS (B) is the string "69.5.7
Only string operations may be performed on the strings created
using the string-number function. The string-number function is the
inverse of the value tunction (VAL); see below. In the example,

note that leading and trailing spaces are not present on the numbets
converted to strings.

VAL — Value

VAL(string-expression)

The value function is the inverse of the string-number function
(STRS$); see above. If the string specified by the string-

expression is a valid representation of a numeric constant, then the
value function converts the string to a numeric constant. For
example, tf A§ ="1234", then VAL(A$) =1234. The normal rules
for the evaluation of string expressions are used here. If the
string specified is not a valid representation of a number or if

the string is of zero length, the message "BAD ARGUMENT”

is displayed and the program stops running. If you specify a string
which is longer than 254 characters, the message "BAD
ARGUMENT" is displayed and the program stops running.

Examples:

>NEW

>100 A=-26.3

>110 PRINT STRSCA) ;" ;A
>120 PRINT 15.7;STR$(15.7}
>130 PRINT STRE(VALC("34.8"))
>140 END
>RUN

-26.3 -26.3

15.7 15.7
34.8

x%x DONE *x

>NEW

2100 PE="23.06"
>110 N$="-4,7"
>120 PRINT VAL(P3);VAL(NS)
>130 PRINT VAL("52"&".5")
>140 PRINT VALC(NSIE&"E"&"12'")
>150 PRINT STRS(VAL(PS))
>160 END
>RUN
23.6 —4.7T
52.5
-4 TE+12
23.6

% DONE *x%

User's Reference Guide

11103

User-Defined Functions

Introduction

In addition to the built-in functions described in the two previous
sections, TI BASIC provides user-defined functions. User-defined
functions can simplify programming by avoiding repeated use of
complicated expressions. Once a function has been defined using
the DEF statement. it may be used anywhere in the program by
referencing the name you gave to the function.

11-104 User's Reference Guide

DEFine

" numeric-function-name | (parameter)l = numeric-eXpression |
' string-function-name |(parameter)| = string-expression f

DEF |

The DEFine statement allows you to define your own functions to
use within a program. The function-name you specify may be any
valid variable name. If you specify a parameter following the
function-name, the parameter must be enclosed in parentheses
and may be any valid variable name. Note that if the expression
you specify evaluates to a string result, the function-name you use
must be string variable name (i.e.. the last character must be a
dollar sign, §).

The DEFine statement specifies the function to be used based upon
the parameter (it specihed), variables, constants, and other built-in
functions. Once a function has been defined, you may use the
function in any string or numeric expression by entering the
function-name. The function-name must be followed by an argument
enclosed in parentheses if a parameter was specified in the DEF
statement. If a function has no parameter specified, when a
reference to the function is encountered in an expression, the
function is evaluated using the current values of the variables which
appear in the DEF statement.

If you specify a parameter for a function, when a reference to the
function is encountered in an expression, the argument is evaluated
and its value is assigned to the parameter. The expression in the
DEF statement is then evaluated using the newly assigned value of
the parameter and the current values of the other variables in the
DEF statement.

Examples:

>*NEW

>100 DEF PI=4xATN(1)

>110 PRINT C€O0S5(60+PI/180)

>120 END
>RUN
.3

*% DONE *%*

>NEW

>100 REM EVALUATE Y=X*(X-3)

>110 DEF Y=X#(X-=3)
>120 PRINT " X Y"
»>130 FOR X==2 TO 5
>140 PRINT X;Y
>150 NEXT X

>160 END
>RUN
XY
-2 10
-1 4
o 0
1 -2
2 -2
300
4 4
5 10
*% DONE ==
>NEW

>100 REM TAKE A NAME AND
PRINT IT BACKWARDS

>110 DEF BACKS (X)I=SEGS(NAMES,

X.1)

>120 INPUT "NAME? ":NAMES

>130 FOR I=LENCNAMES$)> TO
EFP -1

1 58T

>140 BNAMES=BNAMESEBACKE(I)

>150 NEXT I
>160 PRINT NAMES:BNAMESD
>170 END

>RUN

NAME? ROBOT

rROBOT

TOBOR

*% DONE #%

User's Reference Guide

11105

DEF

The parameter used in the DEF statement is local to the DEF
statement in which it is used. This means that it is distinct from any
variable with the same name which is used in other statements in
the program. Thus, evaluating the function does not affect the value
of a variable which has the same name as the parameter

A DEF statement is only performed when the function it defines is
referenced in an expression. When the computer encounters a DEF
statement while running a program, it takes no action but proceeds
to the next statement. A DEF staternent may appear anywhere in a
program and need not logically precede a reference to the function,
but the function definition must have a lower line number than any
statement which references the function. A DEF statement can
reference other defined functions (line 170).

In a DEF statement. the function you specify may not reference
itself either directly {(e.g. DEF B=B#2) or indirectly (e.g. DEF
F=G; DEF G = F). The parameter you specify may not be used as
an array. You can use an array element in a function definition as
long as the array does not have the same name as the parameter.

Examples:

*NEW

>100 DEF FUNCCA)Y=A*{A+B-5)
>110 A=6.9
>120 B=13
>130 PRINT "B= ";B:"FUNC{3)=
";FUNC(3):"A= ";A
>»140 END
>RUN
g= 13
FUNC(3)= 33
A= 6.9

*x DONE %%

>NEW

>100 REM FLND F'{X) USING
NUMERICAL APPROXIMATION

>110 INPUT “X=7 “iX

>120 If ABS{X)>.01 THEN 150

2130 H=.00001

>140 60TD 180

>15¢ H=.001*ABS(X}

>160 DEF F(Z)=3#%7A3-2%2+1

2170 DEF DERCXI=(F(X+H)-F{X~H
Y2/ (2%H)

>180 PRINT "F'{";STR3(X);")=
“;DER(X)

»190 END

>RUN
x=7 1

)= -1.90999997

4 DONE *#

>NEW

>100 DEF GX{X)=GX(2)*X
»110 PRINT GX ({32

>120 END

>RUN

* MEMORY FULL IN 110

»>100 DEF GX(A)I=A(3)A2
?RUN

* NAME CONFLICT IN 100

[f-106

User's Reference Guide

DEF

If you specify a parameter when defining a function, you must
specify an argument when you reference the function. Similarly, if
you do not specify a parameter when defining a function, you cannot
specify an argument in the function reference.

Examples:

>NEW

>100 DEF SQUARE(XI=X*X
>110 PRINT SQUARE

>120 END

>RUN

* NAME CONFLICT IN 1170
>100 DEF PI=3_.1416
>110 PRINT PI(2)
>RUN

% NAME CONFLICT IN 170

User's Reference Guide

1-107

Arrays

Introduction

An array is a collection of variables arranged in a way that allows
you to use them easily in a computer program. The most common
way of grouping variables is in a list, which is called a one-
dimensional array. Each variable in the list is called an element of
the array. The length of the list is limited only by the amount of
memory available.

By using the array capability of T1 BASIC you can do many things
with a list — you can print the elements forward or backward,
rearrange them, add them together, multiply them, or select certain
ones for processing.

In TT BASIC an array may begin with element 0 or element 1. By
using the OPTION BASE statement, you control which beginning
clement the computer establishes. For consistency in describing
arrays, we are assuming that the first clement in each array is
element 1.

Let's say you want to use the computer to take two lists of four
numbers and print all possible combinations of the numbers in both
lists. You might call the first array X and the second one Y. Since X
and Y name a collection of numbers. rather than a single variable,
the computer needs a way to refer to the individual elements in
each array. You must supply a pointer. called a subscript, to the
particular element in the array you want the computer to use. This
subscript is enclosed in parentheses and always immediately
follows the name of the array. The subscript may be explicit, such
as X(3). which refers to the third element in list X, or it may be a
variable, as in X(T), where the value of T points to the proper
element. In any case, the subscript is always either a positive
integer or zero.

The program on the right pairs the numbers in array X and array
Y. Notice that by using the array technique only a few program lines
are needed for this relatively complex procedure.

Multi-Dimensional Arrays

With TI BASIC you can extend your use of arrays to include
tabular information, arranged in rows and columns, called two-

dimensional arrays. You can think of the TIC-TAC-TOE game as
an example of a two-dimensional array.

X|0|X
O|X|X
X000

Examples:

>NEW

>100 REM THLIS PROGRAM FPAIRS
TWO LISTS

*110 REM LINES 120 TO 150
A53IGN VALUES TO LIST X
>120 FOR T=1 TQ 4

>130 READ X(T)

>140 NEXT T

>150 DATA 1,3,5,7

»160 REM LINES 170 TO 200
ASSIGN VALUES TO LIST Y
>170 FOR $=1 T0 4

>180 READ Y(S)

>190 NEXT §

>200 DATA 2,4,6,8

»>210 REM LINES 220 TO 270
PAIR THE LISTS AND PRINT
THE COMBINATIONS

»>220 FOR T=1 TO 4

>230 FOR $=1 TO 4

240 PRINT X (T);¥(5);" ";

>250 NEXT S

>260 PRINT

>270 NEXT T

>?80 FND

»RUN
1 2 1 4 1 & 1 8
3 2 3 4 3 6 3 8
5 2 5 4 5 & 5 8
72 7 4 76 7 8

k% DONE **

I1-108

User's Reference Guide

Arrays

You can represent the gameboard with this array:

T, TiL,2) | T(1,3)
T2,1) | T(2.2) | T(2,3)
T3.1) | T(3.2) | T(3.3)

As in the one-dimensional arrays described carlier, you refer to a
two-dimensional element with a subscript, in this case a double-
subscript to refer to the row and column location. Often you will
use a variable as a subscript, rather than an explicit subscript; for
example T(R,C).

When you use a two-dimensional array, you will often use nested
FOR-NEXT loops. One loop will take the computer through the
rows and the other will take it through the columns. The program
on the right creates a two-dimensional array — a multiplication
table — with five rows and five columns, using nested FOR-NEXT
loops.

You can work with arrays of one, two, or three dimensions on the
TI computer. Elements in three-dimensional arrays are
referenced with three subscript values: X(22,14,7) or M{l1].K}.

Examples:

>NEW
>100
>110

>120
»>130

REM MULTIPLICATION TABLE

CALL
CALL
CALL

CLERR
CHARC(96,"FF™)
CHAR(97,"B0B080B080

808080")

>140 CALL

CHAR (98, "FFB80808080C

808080")

>150
>160
>170
>180
>190
>200
»210
>220
>230
>240
>250
>260
>270

FOR A=1 T0 5

FOR B=1 TO 5
mCA,B)=A*B

NEXT B

NEXT A

FOR A=1 TO 5

FOR B=1 TO 5
PRINT M{A,B)};

IF B<>1 THEN 250
PRINT CHR®{(?7);" ":
NEXT B

PRINT

REM THE FOLLOWING

STATEMENTS PRINT THE LINES
DEFINING THE TABLE

>280
>2%0
>300
>3210
»320
>330
>340
>RUN

== sCcreen

1

IF A<>1 THEN 330

PRINT

CALL HCHAR(23,3,96,3)
CALL HCHAR(23,6,98)
CALL HCHAR(23,7,96,16)
NEXT A

END

clears

2 3 4 5

[V RR V a]

4 & & 10
& 9 12 15
g8 12 16 20
10 15 20 25

%x DONE =+

User's Reference Guide

11-109

DiIMension

DIM {array-name (integer !l integer?||, integer3)) } - Examples:

The DIMension statement reserves space for both numeric and
string arrays. You can explicitly dimensiwon an array only once in
your program. If you dimension an array, the DIM statement must >DIM AC12),B(5)
appear in the program before any other reference to the array. If
you dimension more than one array in a single DIM statement. the

array names must be separated by commas. The array-name may
be any valid variable name.

You may use one-two, or three-dimensional arrays in TI BASIC. *NEW
The number of values in parcn‘thcscs_ following the array name 5100 DIM X(15)
tells the computer how many dimensions the array has. >110 FOR I=1 TO 15

_ _ . . . >120 READ X (D)
One-dimensional arrays have only one integer value following their 130 NEXT I
name. Two-dimensional arrays are described with two integer ;1 gg EE: ';E'IlgTTED(TJPSTEP -1
values which define the number of rows and columns. Three- >160 PRINT X(I3;
dimensional arrays have three integer values defining their >1 ;0 NEXT % s is 67891

12 ti >180 DATA 1,2,3,4,3,6,7,8,7,

characteristics. 0,11,12,13.14,15

B DIM A(6) — describes a one-dimensional array. z;ag END

m DIM A(12.3) — dcscrib.cs a two—dimclnsione_n] array. 15 14 13 12 11 10 9

B DIM A(5.2,11) — describes a three-dimensional array. 8 7 6 5 4 3 2 1

wx DONE *w

If an array is not dimensioned in a DIM statement, the computer
will automatically assign a value of 10 for integer! (and a value of
10 for integer? and integer3 if needed) for cach array used.

Space is allocated for your array after you enter the RUN command
but before the program is actually run. Each element in a string
array, however, is a null string until you actually place values in
each element. If your computer memory cannot handle an array
with the dimensions you specified, you will get a "MEMORY
FULL" message and your program will not run.

iI-110 User's Reference Guide

DIM

Subscripting An Array

Anytime you want to reference an array in your program, you must
be specific about which element in the array you want the computer
to use. To do this. you point to the element with a subscript.
Subscripts are enclosed in parentheses immediately [ollowing the
name of the array. A subscript can be any valid numeric expression

which evaluates to a non-negative result. This result will be
rounded to the nearest integer, if necessary.

The number of elements reserved for an array determines the
maximum value of each subscript for that array 1f you are using an
array not defined in a DIMension statement, the maximum value of
each subscript is 10. The minimum value is zero, unless an
OPTION BASE statement sets the minimum subscript value at

1. Thus an array defined as DIM A(6) actually has seven
accessible elements in TI BASIC. unless the zero subscript 15
eliminated by the OPTION BASE 1 statcment.

The example on the right assumes that the array begins with
element 1 (OPTION BASE 1 on line 120):

B line 130 — This line defines T as a one-dimensional array
with 25 elements.

® line 160 — The numeric variable I here subscripts T.
Whatever value [contains at this time will be used to point
to an element of T. If [=3, the third element of T will be
added.

® line 200 — The subscript 14 tells the computer to print the
fourtecnth element of T.

W line 220 — The computer will evaluate the numeric
expression N +2. If N =15 at this time, the seventeenth
element of T will be printed.

If you access an array with a subscript greater than the maximum
number of elements defined for that array, or if your subscript has a
zero value and you used an OPTION BASE 1 statement, a "BAD

SUBSCRIPT " message will print and the program will end.

Examples:

>*NEW

*>100 REM DEMO OF DIM AND
SUBSCRIPTS
>110 §=100
>120 OPTION BASE 1
>130 DIM T{(25)
*140 FOR 1I=1 TO 25
>150 READ T(I)
>160 A=S+T (I}
»170 PRINT A;
>180 NEXT I
>190 PRINT::
>200 PRINT T(14)
»>210 INPUT "ENTER A NUMBER BE
TWEEN 1 AND 23:":N
>220 PRINT T(N+2)
>230 DATA 12,13,43,45,65,76,7
8,98,56,34,23,21,100,333,222
S111,664,666,543,234,89,765,
%0,101,345
>240 END
>RUN
112 113 143 145 165
176 178 198 156 134
123 121 200 443 322
211 544 766 643 334
189 865 190 201 445

333
ENTER A NUMBER BETWEEN 1 AND
23:14

111

*x DONE %%

User's Reference Guide

[I-111

OPTION BASE

OPTION BASE | }
The OPTION BASE statement allows you to set the lower limit of
array subscripts at one instead of zero. You can omit the OPTION
BASE statement if you want the lower limit of the subscripts to be
Zero.

If you include an OPTION BASE statement in your program, you
must give it a lower line number than any DIMension statement
or any reference to an element in any array. You may have

only one OPTION BASE statement in a program. and it

applies to alf array subscripts in your program. Therefore, you
cannot have one array subscript beginning with 0 and another
beginning with 1 in the same program.

If you use some integer other than one or zero in the OPTION
BASE statement, the computer will stop the program and print
"INCORRECT STATEMENT.”

Examples:

>NEW

>100 QPTION BASE 1
110 BIM X(5,5,5)
>120 %(1,0,1)=3
>130 PRINT X(1,0,1)
>140 END

*RUN

* BAD SUBSCRIPT IN 120

*>100
>RUN
3

ENTER

“%x DONE *w

II-112

User's Reference Guide

Subroutines

Introduction

Subroutines may be thought of as separate self-contained programs
within a main program. They usually perform a certain action, such
as printing some information, performing a calculation, or reading
values into an array. Putting these actions into a subroutine allows
you to type that set of statements only once and then perform that
set of statements from anywhere in the program with a GOSUB
statement .

The GOSUB statement initially behaves like a GOTO statement. [t
causes the computer to jump to the /ine-number listed. However,
subroutine programming gives the computer the capability to
“remember” where the branch occurred in the main program and
return to that point when it finishes the subroutine. This technique
requires that the last statement in the subroutine be a RETURN
statement The propgram normally has cither a STOP statement
or some other unconditional branching statement immediately
before the subroutines so that the computer doesn't accidentally
"fall into” the subroutines. The subroutines should be entered

only by a GOSUB instruction and may be entered at any lne-
number within the subroutine.

The example on the right illustrates how the GOSUB and
RETURN statcments might be arranged in your program. The
program begins running at line 100. At line 300 it skips to the first

subroutine, performs lines 700 through 780, and returns to line 310.

When it reaches line 400, it goes to the second subroutine, performs
lines 900 through 980. returns to line 410, and continues ruaning.
At line 450 it again goes to subroutine 1, this time entering at line
750 and continuing to the RETURN. Then it goes back to the
main program at line 460 and continues running. At line 480 it
again jumps to the first subroutine, runs lincs 700 through 780.
returns to line 490, then stops running at line 600. The STOP
statement in line 600 keeps the computer from performing the
subroutines unless you specifically direct it there with a GOSUB.

Examples:

>NEW

>100

>300

REM MALN PROGRAM

G0sUB 700

»310 .

>400
>410

>450Q

éUSUB 900

gQsuB 750

>460 .

>480
>490

>600
>700

»>750

>78¢
>900

>980
>2940

GDsum 700

STOP
REM SUBROUTINE1

RETURN
REM SUBROUTINEZ

RETURN
END

User's Reference Guide

II-113

GOSuUB

GO SUB

The GOSUB statement is used with the RETURN statement to
allow you to transfer the program to a subroutine, complete the
steps in the subroutine, and return to the next program line
following the GOSUB statement. When the computer performs
the GOSUB statement, it saves the next line number of the main
program so that it can return to that point when it encounters a
RETURN statement in the subroutine.

{ GOSUB] line-number

(The space between GO and SUB is optional.)

Examples:

>NEW

>100

REM BUILD AN ARRAY,

MULTIPLY EACH ELEMENT BY 3,
PRINT 8DTH ARRAYS

>110
>120
>130
>140
>150
>160
170
>180
*190
>200
»elo
»220
>230

FOR X=1 TD 4
FOR ¥Y=1 TO0 7
1CK,YI=INIC3O0*RNDI+]
NEXT Y

NEXT X

PRINT "FIRST ARRAY":
G605UB 260

FOR X=1 TO 4

FOR ¥Y=1 TO 7
I(X,Y)=3%I(X,Y)

NEXT ¥

NEXT X

PRINT "3 TIMES YALUES IN

FIRST ARRAY™::
>240 GDSUB 260
>25¢ sT0P
2260 REM SUBROUTINE TO PRINT
ARRAY

>270
>280
>290
>300
>310
>320
>330
>340
SRUN

FOR X=1 TO 4
FOR Y=1 70 7
PRINT I{X,¥)/
NEXT Y

PRINT

NEXT X

PRINT

RETURN

FIRST ARRAY

16 12 17 12 & 17 8
18 22 1 29 1468 14 11
5 25 22 4 24 11 24

26 21 18 2 12 20 15
3 TIMES VALUES IN FIRST ARRA
Y
48 36 51 36 24 51 24
54 &6 3 BT 4B 42 33
15 75 66 12 72 33 72
78 63 54 &6 36 60 45
*% DONE +%

[1-114

User's Reference Guide

GOSUB

Within a subroutine, you may warnt the computer to jump to another
subroutine, complete it. come back to the first subroutine, complete
its steps, then return to the main program at the point where the
original branch occurred. You can do this easily with the proper
pairing of GOSUB and RETURN statements. However, be sure
you exercise care in designing subroutines so that the computer will
not "lose its place.”

In the example on the right, the main program jumps to subroutine
1 when it reaches line 500. In subroutine 1. when the program
reaches line 730, it goes to subroutine 2. When the RETURN in
subroutine 2 is encountered (line §50). the computer returns to
subroutine 1 at line 740, finishes the subroutine. returns to the main
program and completes it through hine 600.

If the GOSUB statement transfers the program to a line-number not
in the program, the program will end and the message "BAD LINE
NUMBER" will print. If the GOSUB transfers the program to its
own line-number, the program will stop and the message
"MEMORY FULL" will print.

Examples:

>NEW

>100 REM NESTED SUBROUTINES
>7110 REM MAIN PROGRAM

»500 GOSUB 700
>510

>&00 STOP
>700 REM SUBROUTINE1

>730 GOSUB 80O
5740 .

>790 RETURN
>800 REM SUBROUTINEZ

>850 RETURN

>NEW

>»100 X%X=12

>110 ¥=23

>120 GOSUB 120

>130 PRINT Z

>140 sTOP

>150 REM SUBROUTINE
>160 2=X+Y*120/5
>170 RETURN

>*RUN

* MEMORY FULL IN 120
>120 GOsuB 150
»RUN

564

*x%x DONE *x

Uset's Reference Guide

[1-115

RETURN

RETURN Examples:
The RETURN statement is used with the GOSUR statement

to provide a branch and return structure for TI BASIC. >NEW
Whenever the computer encounters a RETURN statement, it takes >100 FOR I=1 TO 3
the program back to the program linc immediatcly following the >110 605UB 150
GOSUB statement that transferred the computer to that particular ;1;8 :E;'.:TI 1=l
subroutine in the first place. You can easily develop programs with >140 STOP
subroutincs which jump to other subroutines and back again, if you >150 REM SUBRDUT;"E
are careful that each GOSUB leads the computer to a RETURN i: ;’g 'EEEN:'.‘I.XIE .
statement . >180 NEXT X
>190 RETURN
>RUN
X= 1
X= 2
I= 1
X= 1
X= 2
1= 2
x= 1
X= 2
1= 3

*%x DONE *%

If, when running a program. the computer encounters a RETURN
statement before performing a GOSUB instruction, the program
will terminate with the message "CAN'T DO THAT.”

[I-116 User’s Reference Guide

ON-GOSUB

ON numeric-expression {GOSUB | fine-number|, /ine-numberl . . . Examples:
GO SUB
The ON-GOSUB statement is used with the RETURN statement >NEW
to tell the computer to perform one of several subroutines, 5100 INPUT “CODE=2":CODE
depeuding un the value of a numeric-cxpression, and then go >110 IF CODE=9 THFN 290

5120 INPUT “HOURS=?":HOURS
>130 ON cODE GOSUB 170,200,23
0,260

514D PAY=RATF*HDURS+BASEPAY

back to the main program sequence.

The computer first evaluates the numeric-expression and converts

the result to an integer, rounding if necessary. This integer tells the >150 PRINT "PAY IS §";PAY
program which subroutine /ine-number in the ON-GOSUB >160 60TQ 100
statement to perform next. If the value of the numeric-expression il;g g:;g;i;lg
is 1, the computer will proceed to the first /ine-number listed in the >190 RETURN
ON-GOSUB statement. If the value is 2, the computer will branch ;g?g g:;g::;fgs
to the second fine-number given, and so on. >220 RETURN)
.. . : X >230 RATE=10
Additionally the computer will save the next ine number following 5240 BASEPAY=S50
the ON-GOSUB statement and return to this point after performing >250 RETURN

: -1 . >»7260 RATE=Z2S
the subroutine. ‘'he subroutine must contain a RETURN 3270 BASEPAYS100

statement to signal the computer to go back to the saved line »>280 RETURN

number and continue the program from that statement. Otherwise, 2290 END

the program will continue until it reaches the end, as ifa GOTO >§B§E=,4

was performed instead of a GOSUB. HOURS=740

PAY IS $ 1100
CODE=?2
HOURS=737

PAY 15 $ 182.25
C0DE=23
HOURS=235.75
PAY IS $ 407.5
CODE=71
HOURS=740

PAY IS $ 129
CODE=79

k% DONE **

If the rounded value of the numeric-expression is less than 1 or >R‘[JJ“ s
greater than the number of line numbers in the ON-GOSURB IEDSE;;?frO

statement, the program will terminate with the message "BAD
VALUE IN xx.” * BAD VALUE IN 130

If the fine-number listed is not a valid program line, the message >130 ON CDDE GOsuB 170,200,23

“BAD LINE NUMBER" will print when you perform the)gﬁg 00

statement. COBE=74
HOURS=740

= BAD LINE NUMBER IN 130

User's Reference Guide 1I-117

File Processing

Introduction

Your TI computer has the capability to store both programs and
data on accessory devices. You can later load and use these files
with your computer as often as you wish, and delete them when
you no longer need them.

The file-processing capability of your computer offers you a
powerful programming tool. You can eliminate retyping your
favorite programs, save important information, and create
procedures to update data important to you. T1 BASIC provides an
extensive range of file-processing features, including sequential and
random file organization and processing, fixed and variable length
records, and display and internal formats for data. This section
describes the 'l BASIC statements which use these features —
OPEN, CLOSE, INPUT, PRINT, and RESTORE. As new
accessory devices become available, the file features they use will
be described in the accompanying manuals.

Note: Device names in TI BASIC are generally required to be
upper-casc letters, For example,

DSK1. filename

Cs1

RS232

Audio Cassetie Tape Recorders

Your TI computer can process files from eitlicr one ur two
standard audio cassette tape recorders (see the "Cassette
Interface Cable” section of this book for instructions on attaching
the recorders). These recorders are designated as CS1 and CS2.
To save and/or load programs you need only one recorder. To
read data from a file, process it in your program, and at the same
time create a uew data file, you will need two recorders — one to
read the stored data and one to write the processed data.

Specific requirements for using file processing features with
cassette recorders are given at the end of each statement
description.

TI Disk Memory System

A disk system, consisting of the T1 Disk Drive Controller and
one to three Disk Memory Drives, is also available for rapid,
accurate data storage and retrieval. The system uses 5% -inch,
single-sided, single-density, soft-sectored diskettes.

A Disk Manager Command Module is enclosed with the Disk
Drive Controller, allowing you to perform easily certain disk
operations, such as cataloging. renaming files, and protecting
files. For more details, see the owner's manual that accompanies
the controller.

[I-118

User's Reference Guide

OPEN

OPEN #file-number:file-namel, file-organizationll ,file-typell ,open-modell .record-typell Jfile-lifel

The OPEN statement prepares a BASIC program to use data files
stored on accessory devices, The OPEN statement does this by
praviding the necessary link between a file-number used in your
program and the particular accessory device on which the file is
located.

The OPEN statement describes a file's characteristics to the
computer so that your program can process it or create it. With
some accessory devices the computer will check that the file or
device characteristics match the information specified in the OPEN
statement for that file. If they don’t match or the computer cannot
find or create the file, the file will not be opened and an [/0 error
message will be printed.

The file-number and file-name must be included in the OPEN
statement. The other information can be included in any order or
can be omitted. If you leave out any specification, the computer will
assume certain standard characteristics for the file, called
“defaults,” as described later in this section.

B file-number — All TI BASIC statements which refer to files do so
by means of a file-number between 0 and 255 inclusive. The file-
number is assigned to a particular file by the OPEN statement.
Since file-number 0 refers to the keyhoard and screen of your
computer and is always accessible, you cannot open or close file-
number O in your program statements. You may assign the other
numbers as you wish, as long as each open file in your program
has a different number.

The file-number is entered as the number sign (#) followed by a
numeric expression. When the computer evaluates this
expression and rounds the answer to the nearest integer, the
number must be 1 to 255 inclusive and cannot be the same file-
number as any other file you are using concurrently in the
program.

B file-name — A file-name refers to a device or to a file located on a
device, depending on the capability of the accessory. Each
accessory has a predefined name which the computer recognizes.
For example, the valid file-names for the two audio cassette
recorders are "CS1” and "CS2." By including this file-name in the
OPEN statement, you are telling the computer to access a
particular file or device whenever the program references the
associated file-number. The file-name can be any string
expression which evaluates to a valid file-name. If you use a
string constant, you must enclose it in quotes.

Examples:

>100 OPEN #2:"CS$1",SEQUENTIAL
,INTERNAL,INPUT,FIXED 128,PE
RMANENT

>100 OPEN #25:"(CS1",SEQUENTIA
L,INTERNAL,INPUT,FLXED PFRMA
NENT

>11¢ X=100

>120 OPEN #X+5:;'"cs2",SEQUENTI
AL,INTERNAL,OUTPUT, FIXED PER
MANENT

>130 N=2

>140 OPEN #122:"CS"&STRS(N),S
EQUENTIAL,INTERNAL,OUTPUT,FI
XED,PERMANENT

User's Reference Guide

119

OPEN

Information about the file-names associated with the T1 Disk
Memory System, the RS232 Interface, and other accessories is
included in the manuals which accompany them.

B file-organization — Files used in TI BASIC can be organized
either sequentially or randomly. Records on a sequential filc arc
read or written one after the other in sequence from beginning to
end. Random-access files (called RELATIVE in TI BASIC) can
be read or written in any record order. They may also be
processed sequentially.

To indicate which logical structure a file has, enter either
SEQUENTIAL or RELATIVE in the OPEN statement. You
may optionally specify the initial number of records on a file by
following the word SEQUENTIAL or RELATIVE with a
NuUMeric expression.

If you omit the file-organization specification, the computer will
assume SEQUENTIAL organization.

B fije-type — This specification designates the format of the data
stored on the file: DISPLAY or INTERNAL.

The DISPLAY -type format refers to printable (ASCII)
characters. The DISPLAY format is normally used when the
output will be read by people, rather than hy the computer. Each
DISPLAY -type record usually corresponds to one print line.

INTERNAL-type data is recorded in internal machine format
which has not been translated into printable characters. Data in
this form can be read easily by the computer but not by people.
(See "INPUT" for a full explanation of how data is stored
internally.)

You will find that the INTERNAL format is more efficient for
recording data on a storage device such as a cassette tape. It
requires less space and is easier to format with a PRINT
statement (see "PRINT" for directions on formatting PRINT
statements for INTERNAL-1ype records and for

DISPLAY -type records). Because the computer uses
INTERNAL-type data internally, a program runs in less time
when your data files are in INTERNAL format. The computer
won't have to convert DISPLAY characters into INTERNAL
format and back again.

If this specification is omitted, the computer assumes DISPLAY
format.

Examples:

>100 QPEN H4:"CS$2" ,0UTPUT,INT
ERNAL,SEQUENTIAL,FI!ED

>120 OPEN #12:NAMES _RELATIVE
50,INPUT,FIXED,INTERNAL

>10¢ DPEN #10:"CcsS1" ,0UTPUT,FI
XED

(computer assumes SEQUENTIAL,
DISPLAY PERMANENT)

[I-120

User's Reference Guide

OPEN

B open-mode — This entry instructs the computer to process the file
in the INPUT. QUTPUT. UPDATE or APPEND mode. If you
omit this clause, the computer will assume the UPDATE mode.

— INPUT files may be read only.

— OUTPUT files may be written only. The new file created
will have all the characteristics given by the OPEN
statement specifications and any standard defaults.

— UPDATE files may be both read and written. The usual
processing is to read a record. change it in some way.
and then write the altered record back out on the file.

— APPEND mode allows data to be added at the end of the

existing file. The records already on the file cannot be
accessed in this mode.

W record-type — This entry specifies whether the records on the file

are all the same length (FIXED) or vary in length (VARIABLE).
The keyword FIXED or VARIABLE may be followed by a
numeric expression specifying the maximum length of a record.
Each accessory device has its own maximum record length, so be
sure to check the manuals which accompany them. If you omit
the record-length specification, the computer will assume a
record length depending upon the device used.

If you define a file as RELATIVE, you must use FIXED-length
records. If this entry is omitted for RELATIVE files, FIXED-
length records are assumed, with the length dependent on the
device.

SEQUENTIAL files may have FIXED ur VARIADLE length
records. If this entry is omitted for SEQUENTIAL files,
VARIABLE-length records are assumed.

If records are FIXED, the computer will pad each record on the
right to ensure that it is the specified length. If the data is
recorded in DISPLAY format, the computer will pad the record
with spaces. If the INTERNAL format is used, the FIXED-

length record will be padded with binary zeroes.

file-life — Files you create with your TI Computer are
considered PERMANENT, not temporary. You may omit this
entry entirely. since the computer will assume a PERMANENT
file-life.

Examples:

>100 OPEN H#53:NAMES,FIXED,INT
ERNAL ,RELATIVE

{computcr assumes UPBATE)

>100 OPEN #11:NAMES,INPUT,INT
ERNAL ,SEQUENTIAL ,VARIABLE 10
0

>100 OPEN #75:"C51",0UTPUT,FI
XED

(computer assumes SEQUENTIAL,
DISPLAY,FIXED Length of 64
positions)

User's Reference (ruide

I1-121

OPEN

Cassette Recorder Information

B file-number* — any number between 1 and 255 inclusive
B file-name* — "CS1" or "CS2”

B file-organization — SEQUENTIAL

B file-type — INTERNAL {(preferred) or DISPLAY

B open-mode* — INPUT or OUTPUT

B record-type* — FIXED

*This specification is required.

For cassette tape records, you may specify any length up to 192
positions. However, the cassette tape device uses records with 64,
128. or 192 positions and will pad the record you specify to the
appropriate length. Thus, if you specify an 83-position cassette
record. the computer will actually write a 128-position record. If the
record length is not specified, a 64-position record length is
assumed.

For cassette devices, the computer does not compare the file
specifications in the OPEN statement to the characteristics of an
existing file.

Whenever the computer performs the OPEN statement for a
cassette tape device, you will receive instructions on your screen for
activating the recorder, as shown on the right.

Note: Only "CS517 can be specified for an INPUT fle. Both "CS1”
and "CS2" can be used for OUTPUT files.

Examples:

*NEW

>100 OPEN #2:"CS1",INTERNAL,I
NPUT,FIXED

., program Lines
>2%90 CLOSE #2
»300 END
PRUN

* REWIND CASSETTE TAPE €s1
THEN PRES5 ENTER

* PRESS CASSETTE PLAY €s1
THEN PRESS ENTER

rest ¢f program run

* PRESS CASSETTE STOP €51
THEN PRESS ENTER

**% DONE *%

[1-122

User's Reference Guide

CLOSE

CLOSE #file-number:DELETE]

The CLOSE statement “closes” or discontinues the association
between a file and a program. After the CLOSE statement is
performed, the "closed™ file is not available to your program unless
you OPEN it again. Also, the computer will no longer associate the
closed file with the file-number you specified n the program. You
can then assign that particular file-number to any file you wish.

If you use the DELETE option in the CLOSE statement, the
action performed depends on the device used. As additional
accessuy devices become available, their accompanying manuals

will describe the DELETE option.

If you attempt to CLOSE a file that you have not opened previously
in your program. the computer will terminate your program with
the "FILE ERROR™ message.

In order to safeguard your files, the computer will automatically
close any open files should an error occur which terminates your
program. If a break occurs in your program, either by a BREAK
command or your pressing CLEAR, open files are automatically
closed only if one of the following occurs:

B vou edit the program

B you terminate BASIC with the BYE command
B you RUN the program again

B you enter a NEW command

If you use QUIT to leave your program. the computer will NOT
close any open files and you could lose the data on these files. If
you need to exit from your file-processing program before its
normal end. follow these directions so that you won't lose any data:

B Press CLEAR unul the computer reacts with
"BREAKPOINT AT xx.” This may take
several seconds.

B Enter BYE when the cursor reappears on the screen.

Examples:

>NEW

»>100 OPEN #6:"CS1",SEQUENTIAL
LINTERNAL,IKPUT,FIXED

110 OPEN #25:"CS2",SEQUENTIA
L,INTERNAL,OUTPUT, FIXED

. prugram LlLines

>200 CLOSE #6:DELETE
>210 CLOSE #25
>220 [ND

User's Reference Guide

11123

CLOSE

Cassette Recorder Information

Whenever the computer performs the CLOSE statement for a
cassette tape device, you will receive instructions on your screen for
operating the recorder. as shown on the right.

I you use the DELETE option with cassette recorders, no action
beyond the closing of the file takes place.

Examples:

>NEW

>7100 OPEN #24:"CST1",INTERNAL,

INPUT,FIXED

>110 OPEN #19:'"cs2",INTERNAL,

QUTPUT,FIXED

. program lines

>200 CLOSE #24
>210 CLDSE #19
>Z20 END

>RUN

* REWIND CASSETTE TAPE
THEN PRESS ENTER

* PRESS CASSETTE FPLAY
THEN PRESS ENTER

* REWIND CASSETTE TAPE
THEN PRESS ENTER

* PRESS CASSETTE RECORD
THEN PRESS ENTER

program runsg

* PRESS CASSETTE S§TODP
THEN PRESS ENTER

* PRESS CASSETTE STOGP
THEN PRESS ENTER

*% DONE *x

£se

I1-124

User's Reference Guide

INPUT

INPUT #Ale-number REC numeric-expressionl:variable-list|

(See also the "Input-Output Statements’ section.)

This form of the INPUT statement allows you to read data from an
accessory device. The INPUT statement can be used only with files
opened in INPUT or UPDATE mode. The file-number in the
INPUT statement must be the file-number of a currently open file.
File-number 0. the keyboard. may always be used. If you choose to
use file-number 0. the INPUT statement is performed as described
in "Input-Qutput Statements,” except that you cannot specify an
input-prompt.

The variable-list contains those variables which arc assigned values
when the INPUT statement is performed. Variable names in the
variable-list are separated by commas and may be numeric and/or
string variables.

Filling the variable-list

When the computer reads records from a file, it stores each
complete record internally in a temporary storage area called an
input/output (1/0) buffer. A separate buffer is provided for each
open fileenumber. Values are assigned to variables in the variable-
fist from left to right. using the data in this buffer. Whenever a
variable-list has been filled with corresponding values, any data
items left in the buffer are discarded unless the INPUT statement
ends with a trailing comma. Using a trailing comma creates a
"pending” input condition (see "Using Pending Inputs”).

If the variable-fist in the INPUT statement is longer than the
number of data items in the current record being processed. the
computer will get the next record from the file and use its data
items to complete the variable-list, as shown on the right.

When performing the INPUT statement, the computer will take
different actions depending on whether the data stored is in
DISPLAY or INTERNAL format.

Examples:

>NEW

>100 OPEN #%3:"CS1",5EQUENTIA
L,DISPLAY,INPUT,FIXED

>110 INPUT #13:4,8,C%,D3,X,Y,
%

»120 IF A=99 THEN 150

>120 PRINT A;B:C$:D5:X;Y:2%
>140 GOTO 110

>150 CLOSE A13

>180 END

>RUN

--data stored on tape will be
printed on the streen

x% DONE *%*

>NEW

>100 OPEN #13:"CS1",SEQUENTIA
L,DTSPLAY, INPUT,FIXED &4
>110 INPUT #13:a,B,C,D

. program Llines

>290 CLDSE #13
>300 END
>RUN

--1st INPUT RECORD=22,77,56,
92

--Results:

A=22 B=77 (=546 D=92

>NEW

>100 OPEN #13:"C$1",SEQUENTIA
L,DISPLAY,INPUT,FIXED 64
>110 INPUT #13:A,B,C,D,E,F,6

. program Lines

>;00 END
--1ST INPUT RECORD=22,33.5
--2ND INPUT RECORD=405,92

--3RD INPUT RECORD=-22,11023
--4TH INPUT RECORD=99,100

-~Results:
A=22 B=33.5 (=405 D=9¢

E=-22 F=11023 =99

User's Reference Guide

[I-125

INPUT

DISPLAY-type Data

DISPLAY -type dala has the sauie ot as data entered o the
keyboard. The computer knows the length of each data item in a
DISPLAY -type record by the comma separators placed between

1LELis.

Each item in a DISPLAY -type record is checked to ensure that
numeric values are placed in numeric variables as shown on the
right in record 1. If the data-type doesn’'t match the variable-type. as
in Record 2 on the right (JG is not a numeric value). an INPUT
ERROR will occur and the program will terminate.

INTERNAL-type Data
INTERNAL-type data has the following form:

Nurmeric
items:

L Il
| I

designates length value of item

of item
(always 8)
Steing é <<f
Items: [] IL i
I
designates length value of item
of itern

The computer knows the length of each INTERNAL-type item by
interpreting the one-position length indicator at the beginning of
each item.

Limited validation of INTERNAL-type data-items is performed. All
numeric items must be 9 positions long (8 digits plus one position
which specifies the length) and must be valid representations of
floating-point numbers. Otherwise, an INPU'T ERROR will occur,
and the program will terminate.

For FIXED-length INTERNAL records. reading beyond the actual
data recorded in each record will cause padding characters (binary
zeros) to be read. If you attempt to assign these characters to a
numeric variable, an INPUT ERROR occurs. If strings are being
read. a null string is assigned to the string variable.

Examples:

>NEW

>100 OPEN #13:"(51",SEQUENTILA
L,DISPLAY ,INPUT,FIXED G4
>110 INPUT #13:A,B,STATES,DS,
X,Y

--INPUT RECORD 1=22,97.6,
TEXAS,"AUTO LICENSE “,
22000,-.07

-~INPUT RECORD 2=46,22,TCXAS,
PROPERTY TAX,42,15

[I-126

User’s Reference Guide

INPUT

Using INPUT with RELATIVE Files
(See "OPENT for a description of RELATIVE file-organization.)

You may read RELATIVE files either sequentially or randomly.
The computer scts up an internal counter to point to which record
should be processed next. The first record in a file 1s record 0.
Thus, the counter begins at zero and 1s incremented by +1 after
cach access to the file, either to read or to write a record. In the
example on the right. the statements direct the computer to read
the file sequentially.

The internal counter can be changed by using the REC clause. The
numeric-expression following the keyword REC will be evaluated
to designate a specific record number on the file. When the
computer performs an INPUT statement with a REC clause. 1t
reads the specified record from the designated file and places it in
the 170 buffer. The REC clause can appear only in statements
referencing RELATIVE files. The example on the right illustrates
accessing a RELATIVE file randomly. using the REC clause.

Be sure to use the REC clause f you read and write records on the
same fle within a program. Since the same internal counter 1s
incremented when records are either read or written for the same
file. yvou may skip some records and write over others if REC is not
used, as shown 1n the example on the right.

If the internal counter points to a record beyond the limits of the file

when the computer tries to access the file, the program will
terminate with an INPUT ERROR.

Examples:

>NEW

>100 OPEN #4:NAMES RELATIVE,I
NTERNAL,INPUT,FLXED &4
>110 INPUT #4:A,B,C3,D$,X

. program lLines

>200 CLOSE #4
>210 END

>NEW

100 OPEN #6:NAMES,RELATIVE,I
NTERNAL ,UPDATE,FIXED 72
>110 INPUT K

>120 INPUT #6,REC K:A,B,C5,D$

program Llines

>170 PRINT #6,REC K:A,B,C%,D3

. program Lines

>300 CLOSE #6
>310 END

>NEW

>100 UPEN #3:NAMES,RELATIVE,I
NTERNAL,UPDATE,FIXED

>110 fOR I=1 TO 10

>120 INPUT #3:A%,8%,03,X,Y

. program lines

>230 PRINT #3:A%5,B5,C5,K,Y
»240 NEXT I

>250 CLOSE #3

>260 END

ZRUN

—--LINE 120=Reads records
0,2,4,6,8...

—--LINE 130-Writes records
1'3’5’?’9___

User's Reference Guide

I1-127%

INPUT

Using Pending Inputs

A pending input condition is established when an INPUT statement
with a trailing comma is performed. When the next INPUT
statement using that file is encountered, one of the following actions
will occur:

B If the next INPUT statement has no REC clause — the
computer uses the data in the 170 buffer beginning where
the previous INPUT statement stopped.

B If the next INPUT statement includes a REC clause —
thc computer terminates the pending input condition and
reads the specified record into the file’'s 170 buffer.

If a pending input condition exists and a PRINT statement for the
same file is performed, the pending input condition is terminated
and the PRINT statement is performed as usual.

If you use a pending input with fife-number 0, the error message
"INCORRECT STATEMENT" is printed and the program stops
runmning.

End-of-file

In sequential processing, to prevent an error when the computer
has no more data to read. you will need to notify the computer that
the end of the file has been reached. To make this easier for you. T1
BASIC includes an End-of-File function called EOF. Be sure to
include the EQF statement immediately before the INPUT
statement which reads a sequential file. In this way vou can

easily cause the computer to stop reading the input file when no
more data is available. The usual procedure 1s to skip to a

closing routine when EQF 1s reached.

Examples:

>NEW

>100 INPUT #0:A,B,
>110 PRINT A;B
>120 GDTO 100
>RUN
?
* INCORRECT STATEMENT
IN 100

>NEW

»>100 OPEN #5:NAMES,SEQUENTIAL
,INTERNAL,INPUT,FIXED

>110 IF EOF(5) THEN 150

>120 INPUT #5:A,B

>130 PRINT A;B

>140 60TO 110

>150 CLOSE 45

>160 END

[I-128

User's Reference Guide

INPUT

The EQF function cannot be used with RELATIVE files or with

some accessory devices. In these cases, vou will need to create your
own method for determining that the end-of-fle has been reached.

One common end-of-file technigue is to create a last record on the
file that serves as an end-of-file indicator. It is called a "dummy”
record because the data it contains is used only to mark the end of
the file. For example. it could be filled with "9's.” Whenever the
computer inputs a record, you can check the data. If it is equal to
"0's.” then the computer has reached end-of-file and can skip to the
closing routine

The first example on the right creates a dummy record. In the next
example, the computer checks for the dummy record as its end-of-
file technique.

Cassette Recorder Information
M RELATIVE file-organization cannot be used with
cassette devices.

® The EOF (End-of-File} function cannot be used with files
on cassette recorders.

B You may specify a record length up to 192 positions (see
"OPEN".

® Only cassette unit 1 {CS1) can be used for inputting
data.

Examples:

>NEW

>100 OPEN #2:"€81",SEQUENTIAL
LFIXED,QUTPUT,INTFERNAL

>110 READ A,B,C

>120 IF A=99 THEN 180

>130 E=A+B*C

>140 PRINT A;B;C;E

>150 PRINT #2:4,B,C,E

>16¢0 6070 110

>170 DATA 5,10,15,10,20,30,10
0,200,300,99,95,%9

>180 PRINT #2:99,99,9%9,99
>190 CLOSE #¢2

>200 END

*RUN

* REWIND CASSETTE TAPE €51
THCN PRESS ENTER

* PRESS CASSETTE RECORD CS1
THEN PRESS ENTER
5 10 15 3¢
to 20 30 60
160 200 300 6400

* PRESS CASSETTE STOP cs1
THEN PRESS ENTER

x% DONE **

*NEW

>100 OPEN #1:"CS51",INTERNAL,I
NPUT,FIXED

>110 INPUT H1:4,B,C,E

>120 IF A=9%9 THEN 160

>130 F=A*E

>140 PRINT A;B;C;E;F

5150 6OTO 110

5160 CLDSE #1

>170 END

SRUN

* REWIND CASSETTE TAPE cs1
THEN PRESS ENTER

* PRESS CASSETTE PLAY cs1
THEN PRESS ENTER
s 10 15 30 15¢
M 20 30 60 400
100 200 300 600 6000

* PRESS CASSETTE STOP cs1
THEN PRESS ENTER

*% DONE %

User's Reference Guide

11-129

EOF—End-of-File Function

EOF (numeric-expression)

The end-of-file function determines if an end-of-file has been
reached on a file stored on an accessory device. The argument
specifies an open file-number (see "OPENT). The argument is the
value obtained when the numeric-expression 1s evaluated. The
normal rules for the evaluation of numeric expressions are used
here.

The value the function provides depends on the position of the file.
The values supplied are:
Valuc Position

0 Not end-of-file
+1 Logical end-of-file
-1 Physical end-of-file

A file is positioned at a logical end-of-file when all records on the
file have heen processed. A file is positioned at a physical end-of-file
when no more space is available for the file.

This function and the example on the right cannot be used with
cassette tape recorders. Its use with any other accessory devices
will be more fully explained in their accompanying manuals.

Examples:

ZNEW

>100 DPEN HZ:NAMES,SEQUENTIAL
LINTERNAL ,INPFUT,FIXED

>110
>120
>130
>140
>150
»160
>170

IF EDF(2) THEN 160
REM IF EOF GIVES ZERO
INPUT #2:A,.B,C

PRINT A;B;C

GOTO 110
CLGSE #2
END

130

Users Reference Guide

PRINT

FRINT #file-numberd REC numeric-expressionll:print-list|

(For a description of the PRINT format for printing ou the
computer screen, see the "Input-Output Statements™ section.)

This form of the PRINT statement allows you to write data onto an
accessory device. The PRINT statement can be used to write only
on files opened in QOUTPUT, UPDATE., or APPEND mode.

The file-number must be the fife-number of a currently open file.

When the computer performs a PRINT statement, it stores the data
in a temporary storage area called an input/output {1/O) buffer. A
separate buffer is provided for each open file-number. [f the PRINT
statement does not end with a print-separator (comma, semicolon,
or colon), the record is immediately written onto the file from the
I/0 buffer. If the PRINT statement ends with a print-separator, the
data is held in the buffer and a "pending” print condition occurs (see
"Using Pending Prints™ in this section.)

The information you need for creating a print-fist to record data on
accessory file storage devices is discussed here. The print-fist
needed to display print lines (on a printer, etc.) is the same as the
print-list described in "Input-Output Statements.” You may use
either DISPLAY or INTERNAL format for data stored on
accessory devices. However, since these files are read only by the
computer, by far the easiest-to-use and most efficient data-type 1s
INTERNAL.

Using PRINT with INTERNAL-type Data

The print-list consists of numeric and string expressions separated
by commas, colons, or semicolons. All print-separators in a print-
list have the same effect for INTERNAL typc data they only
separate the items from each other and do not indicate spacing
character positions in a record.

Examples:

>NEW

>100 DPEN #5:"CS1",SEQUENTIAL
,INTERNAL,QUTPUT,FIXED

prggram Llines
>170 PRINT #5:A,B,C5,D%
. prcgram Lines

>200 CLOSE HS
»21Q0 END

>NEW

>100 OPEN #6:"CS2",SEQUENTIAL
,DISPLAY,OUTPUT,FIXED

. program Llines

>170 PRINT #6:a;",";8;",";CH;
" "'DS
, r

. program lines

»200 CLDSE #é
>210 END

User's Reference Guide

11-131

PRINT

When items in the print-fist are written on the accessory storage
device in INTERNAL format. they have the following
characteristics:

Numerie

items: 1 |
1 T

designates length wvalue of item
of item

(always 8)

String g g

items: Ll | |

designates length value of item

of item

In the example on the right. the total length of the data recorded in
INTERNAL format is 71 positions. Each numeric variable uses 9
positions. A$ is 18 characters long (line 110) plus 1 position to
record the length of the string. B§ is 15 characters (line 120} plus 1.
If the values of A$ and B$ change during the program. their lengths
will vary according to whatever value is present when the record is
written onto the files. In designing your record, therefore. become
familiar with the data each variable might contain and plan your
recond o allow for the largest length possible.

Whenever you specify FIXED-length records, the computer will
pad each INTERNAL-type record with binary zeros, if necessary,
to bring each record to the specified length.

The computer will not allow a record to be longer than the specified
or default length for the device you are using. If including all data n
a print-list would cause this condition to occur for an INTERNAL-

type record, the program will terminate with the message "FILE
ERROR IN xx.”

Examples:

>NEW

>100 OPEN H#5:"€S1",5EQUENTIAL
,INTERNAL,OUTPUT,FIXED 128

>110 A$="TEXAS INSTRUMENTS "
>120 B$="COMPUTER "

>130 READ X,Y,Z

>140 IF X=99 THEN 194

>150 AR=X*YwZ

»160 PRINT #5:A%,X,Y,2,B%,4

»170 6OTC 130

>180 DATA 5,6,7,1,2,3,10,20,3
0,20,40,60,1.5,2.3,7.6,99,99
,99
>190 CLDSE 45
>200 END
>RUN
* REWIND CASSETTE TAPE cs1

THEN PRESS ENTER

* PRESS CASSETTE RECORD cs1
THEN PRESS ENTER

--data written on tape

* PRESS CASSETTE STOP cs1
THEN PRESS ENTER

*% DONE *=*

I1-132

User's Reference Guide

PRINT

Using PRINT with DISPLAY-type Data on File Storage Devices

Although it is best to use INTERNAL tormat for data recorded on
file storage devices which will be read by the computer, you may
occasionally need to use DISPLAY-type records. Included here are
several important considerations you must observe when using

DISPLAY format.

B Records are created according to the specifications found
in the PRINT statement of the "Input-Output Statements”
section.

m If including a data-item from the print-fist would cause
the record to be longer than the specified or default length
for the device you are using, the item is not split but
becomes the first item in the next recerd. If any single
item is longer than the record length, the item will be split
into as many records as required to store it. The program
continues running nornally and no warning s given.

B In order to later read DISPLAY -type files created with the
PRINT statement, the data must look like it does when
you enter it from the keyboard. Therefore, you must
explicitly include the comma separators and quote marks
needed by the INPUT statement when you write the
record on the file. These punctuation marks are not
automatically inserted when the PRINT statement 1s
performed. They must be included as items in the print-
list, as shown in line 170 on the right.

B Numeric items do not have a fixed length as they do in
INTERNAL format. In DISPLAY -type files, the length of
a numeric item is the same as it would be if it were
displayed on the screen using the PRINT or
DISPLAY statement {i.e., includes sign, decimal point,
exponent, trailing space. etc.). For example, the number of
positions required to print 1.35E-10 is ten.

Examples:

>NEW

>100 OPEN #10:"CS1" , SERUENTIA
L,DISPLAY, OUTPUT,FIXED 128

. program Lines
)1?0 PRINT #10:““““;A$;”“"’“;
X;II’II;Y;II‘II;Z;II'HIIII;BS;HI'III'U
P A
r

. program Lines

>300 CLOSE #10
>310 END

User's Reference Guide

11-133

PRINT

Using PRINT with RELATIVE Files
(See "OPEN " for a description of RELATIVE file-organization.)

RELATIVE file records can be processed randomly or in sequence.
The cunputer sels up au interual counler o point W which record
should be processed next. The first record in a file is record 0.
Thus, the counter begins at zero and is incremented by +1 after
each file access, either to read or to write a record. In the example
on the right, the PRINT statement directs the computer to write
the file sequentially. It can later be processed either randomly or in
sequence.

The internal counter can be changed by using the REC clause. The
keyword REC must be followed by a numeric-expression whose
value specifies in which position the record in the file is w be
written. When the computer performs a PRINT statement with a
REC clause, it begins building an output record in the [/O buffer.
When this record is written onto the file, it will be placed at the
location specified by the REC clause. You may use the REC clause
only with RELATIVE files. The example on the right illustrates
writing records randomly, using the REC clause.

Be sure to use the REC clause if you read and write records on the
same file within a program. Since the same internal counter is
incremented when records are either read or written for the same
file, you could skip some records and write over others if REC is
not used, as shown in the example on the right.

Examples:

>NEW

>100 OPEN H#3:NAMES , RELATIVE,I
NiEKNAL ,OUTPUT,FIXED 128

. program lines

>150 PRINT #3:A%,8%,C3,X%X,Y,Z

. program lines

>éOO CLOSE #3
>210 END

>NEW

>100¢ DPEN #3:NAMES,RELATIVE,I
NTERNAL, UFDRIE,F1XED 128

>110 INPUT K

>120 PRINT #3,REC K:A$,B%,C3,
X,¥,1

. pragram Lines

»300 CLOSE #3
»310 END

>NEW

>*100 OPEN #3:NAMES ,RELATIVE,I
NTERNAL,UPDATE, FIXED

>110 FOR I=1 TO 10

>120 INPUT #3:A%,BS,CS,X,Y
>130 PRINT #3:A%,BS$,CS,.X,Y
>140 NEXT I

150 CLOSE #3

>160 END

LINE 120-reads records 0,2,4,

22 0

LINE 130-writes records 1,3,
SI?’
9...

11-134

User's Reference Guide

PRINT

Using Pending Prints

A record is always written onto a file whenever the computer
performs a PRINT statement which has no trailing separator. A
pending print condition is established when a PRINT statement
with a trailing print-separator is performed. When the next PRINT
statement using the file is encountered, one of the following actions
OCCUrs:
B If the next PRINT statement has no REC clause — the
computer places the data in the 170 buffer immediately
following the data already there.

B If the next PRINT statement has a REC clause — the
computer writes the pending print record onto the file at
the position indicated by the internal counter and
performs the new PRINT-REC statement as usual.

If a pending print condition exists and an INPUT statement for the
same file is encountered, the pending print record will be written
onto the file at the position indicated by the internal counter, and
the internal counter is incremented. Then the INPUT statement 1s
performed as usual. If a pending print condition exists and the file is
closed or restored, the pending print record is written before the

file is closed or restored.

Cassette Recorder Information
B You may specify any record length up to 192 positions.

B You may process SEQUENTIAL files only (you cannot
use RELATIVE file-organization with cassette tapes).

User's Reference Guide

11-135

RESTORE

RESTORE #file-numberd REC numeric-expression|

{For a deseription of the RESTORE statement used with the
READ and DATA statements, see "Input-Output Statements.”)

The RESTORE statement repositions an open file at its beginning
record (see the first example on the right), or at a specific record if
the file is RELATIVE (see the second example on the right).

If the file-number specified in a RESTORE statement is not

already open. the program will terminate with the message "FILE
ERROR IN xx.”

You may use the REC clause only with a RELATIVE file. The
computer evaluates the numeric-expression following REC and
uscs the valuc as a pointer to a specific record on the file. If you
RESTORE a RELATIVE file and do not use the REC clause, the
file will be set to record 0.

If there is a pending PRINT record. the record will be written on
the file before the RESTORE is performed. If there is a pending
INPUT, the data in the I/O buffer is discarded.

RELATIVE files are not supported by cassette recorders.

Exampiles:

*NEW

>100 OPEN #2:"C31",SEQUENTIAL
LINTERNAL,ENPUT,FIXED &4
>110 INPUT #2:4,B,C$,D$,X

. program Lines

>400 RESTORE #2
>410 INPUT H2:A,B,CS,DS$,X

. program lines

>500 cLDsSE #2
>510 END

>NEW

>100 OPEN H4:NAME®,RELATIVE,I
NTERNAL ,UPDATE,FIXED 128
>110 INPUT #4:A,B,C

. program lines
>200 PRINT #&;A,B,C
., program Lines

>300 RESTORE W4 ,REC 10
>31¢ INPUT H4:A,B,C

. program Lines

>400 CLOSE #4
>410 END

11-136

User's Reference Guide

Appendix

ASCII CHARACTER CODES

The defined characters on the T1-99/4A Computer are the standard ASCII characters for codes 32
through 127. The following chart lists these characters and their codes.

ASCII ASCII ASCII
CODE CHARACTER CODE CHARACTER CODE CHARACTER
32 (space) 65 A 97 A
33 ! (exclamation point) 66 B 98 B
34 " (quote) 87 C 99 C
35 # (number or pound sign) 68 D 100 D
36 % (dollar) 69 E 101 E
37 U {percent) 70 I 102 F
38 & (ampersand) 71 G 103 G
39 ° (apostrophe) 72 H 104 H
40 ({open parenthesis) 73 1 105 1
41) (close parenthesis) 74] 106]
42 * (asterisk) 75 K 107 K
43 + (plus) 76 L 108 L
44 , (comma) s M 109 M
45 — {minus) 78 N 110 N
46 . (peried) 7% 0O 111 0
47 7/ (slant) 50 P 112 P
48 0 g1 Q 113 0
49 1 82 R i14 R
50 2 B3 S 115 S
51 3 854 T 116 T
52 4 85 U 117 U
53 5 86 V 118 v
54 6 87 W 119 W
55 7 88 X 120 X
56 8 89 Y 121 Y
57 9 90 Z 122 2
58 . (colon) 91 | (open bracket) 123 | (left brace}
59 (semicolon) 92 ~ (reverse slant) 124 !
60) << (less than) 93 | (close bracket) 125 {right brace)
61 = (equals) 04 A (exponentiation) 126 - (tilde)
62 > (greater than) 95 {line) 127 DEL{appears on
63 ? {question mark) 96 {grave) screen as a
64 @ (at sign) blank.)

These character codes are grouped into twelve sets for use in color graphics programs.

Set # Character Set # Character Set # Character
Codes Coudes Codes
1 32-39 5 64-71 G 96103
2 4(3-47 (5} 72-79 10 104-111
3 48-55 7 80-87 11 112-119
4 56-63 8 B8-95 12 120-127

Two additional characters are predefined on the T1-99/4A Computer. The cursor is assigned to
ASCII code 30, and the edge character is assigned to code 31.

User's Reference Guide 1111

Appendix

FUNCTION AND CONTROL KEY CODES

Codes are also assigned to the function and control keys, so that these can be referenced by the
CALL KEY subprogram in TI BASIC. The codes assigned depend on the key-unit value specified in
a CALL KEY program statement.

Codes
TI99/4 &
BASIC Modes

1

2

3

4

5

6

7

ke

Q9

10

11

12

13

14

15

Codes
BASIC Pascal
Mode Mode

129 1
130 2
131 3
132 4
133 5
134 6
135 7
136 3
137 0
138 10
139 11
140 12
141 13
142 14
143 15
144 i6
145 17
146 18
147 10
148 20
149 21
150 22
151 23
152 24
153 25
154 26
155 27
156 28
157 29
158 30
159 31

Function Key Codes

Pascal Fuanction Function
Mode Name Key
129 AlD FCTN 7
130 CLEAR FCTN &
131 DELete FCTN 1
132 INSert FCTN 2
133 QuUIT FCTN =
134 REDO FCTN 8
135 ERASE FCTN 3
136 LEFT arrow FCTN S
137 RIGHT arrow FCTND
138 DOWN arrow FCTN X
130 UP arrow FCTNE
140 PROD'D FCTN &
141 ENTER ENTER
142 BEGIN FCTN 5
143 BACK FCTN 9
Control Key Codes
Mnemonic
Code Press Comments
SOH CONTROL A Start of heading
STX CONTROL B Start of texr
ETX CONTROL C End of text
EOT CONTROL D End of transmission
ENQ CONTROL E Enquiry
ACK CONTROL F Acknowledge
BEL CONTROL G Bell
BS CONTROL H Backspace
HT CONTROL I Horizontal tabulation
LF CONTROL] Line feed
VT CONTROL K Vertical tabulation
FF CONTROL L Form feed
CR CONTROL M Carriage return
=0 CONTROL N Shift out
= CONTROL O Shilt in
DLE CONTROL P Data link escape
DC1 CONTROL Q Device control 1 (X-ON)
DC2 CONTROL R Device control 2
DC3 CONTRCL S Device control 3 (X-OFF)
DC4 CONTROL T Device control 4
NAK CONTROL U Negative acknowledge
SYN CONTROL V Synchronous idle
ETB CONTROL W End of transmission block
CAN CONTROL X Cancel
EM CONTROL Y End of medium
SUB CONTROL Z Substitute
ESC CONTROL . Escape
FS CONTROL ; File separator
GS CONTROL = Group separator
RS CONTROL 8 Record separator
us CONTROL 9 Unit separator

I11-2

User's Reference Guide

Appendix

KEYBOARD MAPPING
The following diagrams illustrate the key codes returned in the four keyboard modes specified by the
key-unit value in the CALL KEY statement. The figures on the upper key face are function codes,

and the lower figures are control codes.

3 L 7 2 14 12 1 & 15 5
’ 2 4 g g 7 8 8 G -
11
¢ W 3 R f Y u i 0 P /
8] 13
A 5 o F G H J 4 | ENTER
10
SHIFT £ X ¢ u B I M SHIE
ALPHA
Lock | cTR SPACE FOTN

Figure 1. Standard T1-99/4 Keyboard Scan.

Key-unit = 3. Both upper- and lower-case alphabetical characters returned as lower-case.
1-15. No control characters active.

Function codes =

131 132 135 130 142 140 123 134 143 133
1 2 3 4 g 2] 7 H £ [u] -
3o 21 29
1249
Q W k R T ¥ U | i F ¢
17 23 5 18 20 25 4 a 15 16
136 137 141
A 1 C F G H J K L H ENTEH
1 19 4q [] 7 8 10 11 12 28
138
SHIFT 7 k3 C v =] K ™M . BHIFT
26 24 3 22 2 14 13 27
ALBHA
10K OTARL SPACE FCTH

Figure 2. Pascal Keyboard Scan.

Key-unit = 4. Upper- and lower-case characters active,
Function codes = 129-143. Control character codes = 1-31.

11-3

User's Reference Guide

Appendix

3 4 ¥ 2 14 12 1 6 15
1 2 3 4 5 & g g 0 =
188 159 187
11
a W E R T ¥ 1] 1 0 P /
1as 151 133 146 148 153 149 137 143 144 187
8 - 13
A 5 U F G H J K L ; ENTER
129 147 13z 124 138 136 138 139 140 156
10
SHIFT z kS [v a] ¥ R i SHIFT
184 152 121 150 130 142 141 128 188
ALPHA
LOCK CTRL SPACE FCTN

Figare 3. BASIC Keyboard Scan.

Key-unit = 5. Upper- and lower-case characters active.
Function codes = 1-15. Control character codes = 128-159, 187.

Key-unit = 1 . Kev-umt = 2
1 = 3 4 5 E 5 7 B 3 0] =
19 7 8 8 0 |} 19 7 a 8 10
l'""
i
3 w E H Ty u | 0 P /
18 4 s & 1 i a8 a 5 6 11 16
A 5 0 F [H d K L H EMNTER
1 2 3 12 17 1 2 3 12 17
SHIFT 7 x i W B i N R . . SHIFT
18 0 14 13 16 | 15 [}] 14 13
AL PHA
Lotk | CTRL SPACE FCTN
Figure 4. Split Keyboard Scan.
Codes returned = 0-19.
CHARACTER CODES FOR SPLIT KEYBOARD
CODES KEYS* CODES KEYS*

0 X.M 10 5.0
1 A H 11 TP
2 SN | 12 F.L
3 DK 13 V. . (period)
4 w.U 14 C, . (comma)
5 E.l 15 ZN
6 R.0 16 B. / {slash)
7 2.7 17 G. ; (semicolon)
8 3.8 18 QY
9 4.0 19 1.6

*Note that the first key listed is on the left side of the keyboard,
and the second key listed is on the right side of the keyhoard.

111-4

User’s Reference Guide

Appendix

PATTERN-IDENTIFIER CONVERSION TABLE

Blocks

COLOR

Transparent
Black

Medium Green
Light Green
Dark Blue
Light Blue
Dark Red
Cyan

BINARY CODE HEXADECIMAL

(0 =off;1 =on) CODE

0000 0

0001 1

0010 2

0011 3

0100 4

o1m 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

COLOR CODES
COLOR CODE #

1 Medium Red 9
2 Light Red 10
3 Dark Yellow 11
4 Light Yellow 12
5 Dark Green 13
o Magenta 14
7 Gray 15
8 White 16

CODE #

User’s Reference Guide

I11-5

Appendix

HIGH-RESOLUTION COLOR COMBINATIONS

The following color combinations produce the sharpest, clearest character resolution on the TI-90/4A

color monitor screen. Color codes are included n parentheses.

Black on Medium Green (2. 3)
Black on Light Green (2, 4)
Black on Light Blue (2. o)

Black on Dark Red (2. 7)

Black on Cyan (2, 8)

Black on Medium Red (2, 9}
Black on Light Red (2, 10}

Black on Dark Yellow (2, 11)
Black on Light Yellow (2, 12)
Black on Dark Green (2, 13)
Black on Magenta (2, 14)

Black on Gray (2, 15)

Black on White {2, 16)

Medium Green on White (3, 16)
Light Green on Black (4, 2)

Light Green on White (4, 16)
Dark Blue on Light Blue (5, 6)
Dark Blue on Gray (5. 15)

Dark Blue on White (5, 16)

Light Blue on Gray (6, 15)

Light Blue on White (6, 16)

Dark Red on Light Yellow (7, 12)
Dark Red on White (7, 16)
Medium Red on Light Red (9, 10)
Medium Red on Light Yellow (9, 12)
Medium Red on White (9, 16)

Light Red on Black (10, 2)

Light Red on Dark Red (10, 7)
Dark Yellow on Black (11. 2)
Light Yellow on Black (12, 2)
Light Yellow on Dark Red (12, 7)
Dark Green on Light Green (13, 4)
Dark Green on Light Yellow (13, 12)
Dark Green on Gray (13, 15)
Dark Green on White {13, 16)
Magenta on Gray (14, 15)
Magenta on White (14, 16)

Gray on Black (15, 2}

Gray on Dark Blue (15, 5)

Gray on Dark Red (15, 7}

Gray on Dark Green (15, 13)
Gray on White (15, 16)

White on Black (16, 2)

White on Medium Green (16, 3)
White on Light Green (16, 4)
White on Dark Blue (16, 5)

White on Light Blue (16, 6)
White on Dark Red (16, 7)

White on Medium Red (16, 9)
White on Light Red (16. 10)
White on Dark Green (16. 13)
White on Magenta {16, 14)

White on Gray (16, 15)

-6

User's Reference Guide

Appendix

MUSICAL TONE FREQUENCIES

The following table gives frequencies (rounded to integers) of four octaves of the tempered scale {one
half-step between notes). While this list does not represent the entire range of tones — or even of
musical tones — it can be helpful for musical programuing,.

Frequency Note Frequency Note
110 A 44() A (above middle C)
117 A* Bb 4606 A% B?
123 B 404 B
131 C (low C) 523 C (high C)
139 C#.DP 554 c#D?
147 D 587 D
156 D# Eb 622 D# E?
165 E 659 E
175 F 698 F
185 F#.GP 740 F# G?
196 G 784 G
208 G# A 831 G#.AP
220 A (below middle C) 880 A (above high C)
220 A (below middle C) 880 A (above high C)
233 A” BY 932 A* Bb
247 B Q&8 B
262 C {middle C) 1047 C
277 C# Db 1109 c#.DP
204 D 1175 D
311 D# E? 1245 D# EP
330 E 1319 E
349 F 1397 F
370 F*.GP 1480 F=.GP
392 G 1568 G b
415 G# A 1661 G# A
440 A (above middle C) 1760 A

User's Reference Guide Ii1-7

Error Messages

- Errors Found When Entering a Line

* BAD LINE NUMBER
1. Line number or line number referenced
equals 0 or is greater than 32767
2. RESEQUENCE specifications generate
a line number greater than 32767

* BAD NAME
1. The variable name has more than 15
characters

* CAN’T CONTINUE
1. CONTINUE was entered with no
previous breakpoint or program was
edited since a breakpoint was takcn.

* CAN'T DO THAT

1. Attempting to use the following program
statements as commands: DATA, DEF,
FOR, GOTO, GOSUB, IF. INPUT,
NEXT, ON, OPTION, RETURN

2. Attempting to use the following
commands as program statements
(entered with a line number); BYE,
CONTINUE, EDIT, LIST, NEW,
NUMBER. OLD, RUN, SAVE

3. Entering LIST, RUN. or SAVE with no
program

* INCORRECT STATEMENT

1. Two variable names in a row with no
valid separator between them (ABC A or
A%A)

2. A numeric constant immediately follows
a variable with no valid separator
between them (N 257)

3. A quoted string has ne closing quote
mark

4. Invalid print separator between numbers
in the LIST, NUMBER, or
RESEQUENCE commands

5. Invalid characters following
CONTINUE, LIST, NUMBER,
RESEQUENCE., or RUN commands

6. Command keyword is not the first word
n a line

7. Colon does not follow the device name in
a LIST command

* LINE TOO LONG
1. The input line is too long for the input
buffer

* MEMORY FULL
1. Entering an edit line which exceeds
available memory
2. Adding a line to a program causes the
program to exceed available memory

. Errors Found When Symbol Table Is
Generated

When RUN is entered but before any program
lines are performed, the computer scans the
program in order to establish a symbo/ table. A
symbol table is an area of memory where the
variables, arrays, functions, etc., for a program
are stored. During this scanning process, the
computer recognizes certain errors in the
program, as listed below. The number of the
line containing the error is printed as part of the
message (for example: * BAD VALUE IN 100).
Errors in this section are distinguished from
those in section I1I. in that the screen color
remains cyan until the symbol table is
generated. Since no program lines have been
performed at this point, all the values in the
symbolf table will be zero (for numbers) and null
{for strings).

* BAD VALUE
1. A dimension for an array is greater than
32767
2. A dimension for an array is zero when

OPTION BASE =1

* CAN'T DO THAT
1. More than one OPTION BASE
statement in your program
2. The OPTION BASE statement has a
higher line number than an array
definition

* FOR-NEXT ERROR

1. Mismatched number of FOR and
NEXT statements

* INCORRECT STATEMENT
DEF

1. No closing)" after a parameter in a
DEF statement

2. Equals sign (=) missing in DEF -
statement

3. Parameter in DEF statement is not a
valid variable name

I-8

User's Reference Guide

Error Messages

DIM

4. DIM statement has no dimensions or
more than three dimensions

5. A dimension in a DIM statement 15 not
a number

6. A dimension in a DIM statement is not
followed by a comma or a closing ")"

7. The array-name in a DIM statement is
not a valid variable name

8. The closing ")" is missing for array
subscripts

OPTION BASE
g, OPTION not followed by BASE
10. OPTION BASE not followed by 0

or 1

* MEMORY FULL
1. Array size too large
2. Not enough memory to allocate a
variable or function
* NAME CONFLICT
1. Assigning the same name to more than
one array (DIM A(5). A(2.7))
2. Assigning the same name to an array and
a simple variable
3. Assigning the same name to a variable
and a function
4. References to an array have a different
number of dimensions for the array
(B=A(2,7)+2, PRINT A(5))

Ill. Errors Found When a Program |Is Running

When a program is running. the computer may
encounter statements that it cannot perform. An
error message will be printed, and unless the
error is only a warning the program will end. At
that point, all variables in the program will have
the values assigned when the error occurred.
The number of the line containing the error will
be printed as part of the message (for example:
CAN'T DO THAT IN 210).

* BAD ARGUMENT

1. A built-in function has a bad argument

2. The string expression for the built-in
functions ASC or VAL has a zero length
(null string)

3. In the VAL function, the string
expression is not a valid representation
of a numeric constant

%

*

*

*

BAD LINE NUMBER
1. Specified line number does not ¢xist 1n
ON, GOTO or GOSUB statement
2. Specified line number in BREAK or
UNBREAK does not exist (warning only)

BAD NAME
1. Subprogram name in a CALL statement
is invalid
BAD SUBSCRIPT
1. Subscript is not an integer
2. Subscript has a value greater than the
specified or allowed dimensions of an
array
3. Subscript 0 used when OPTION BASE
1 specified

BAD VALUE

CHAR

1. Character-code out of range in CHAR
statement

2. Invalid character in pattern-identifier in
CHAR statement

CHRS$
3. Argument negative or larger than 32767
in CHR$

COLOR

4. Character-set-number out of range in
COLOR statement

5. Foreground or background color code out
of range in COLOR statement

EXPONENTIATION (/)

6. Attempting to raise a negative number to
a fractional power

FOR

7. Step increment is zero in FOR-TO-
STEP statement

HCHAR, VCHAR, GCHAR

8. Row or column-number out of range in
HCHAR, VCHAR, or GCHAR
statement

JOYST. KEY

9. Key-unit out of range in JOYST or KEY
statement

ON

10. Numeric-expression indexing /ine-

number is out of range

User's Reference Guide

119

Error Messages

OPEN, CLOSE, INPUT, PRINT,

RESTORE

11. File-number negative or greater than
255

12. Number-of records in the
SEQUENTIAL option of the OPEN
statement is non-numeric or greater
than 32767

13. Record-fength in the FIXED option of
the OPEN statement is greater than
32767

POS

14. The numeric-expression in the POS

statement is negative, zero, or larger
than 32767

SCREFEN
15. Screen cofor-code out of range

SEGH

16. The value of numeric-expression!
(character position) or aumeric-
expression? (length of substring) is
negative or larger than 32767

SOUND

17. Duration, frequency, volume or noise
specification out of range

TAB

18. The value of the character position is

greater than 32767 in the TAB function
specification

* CAN'T DO THAT

1. RETURN with no previous GOSUB
statement

2. NEXT with no previous matching FOR
statement

3. The control-variable in the NEXT
statement does not match the controf
variable in the previous FOR statement

4. BREAK command with no line number

* DATA ERROR

1. No comma between items in DATA
statement

2. Variable-list in READ statement not
filled but no more DATA statements are
available

3. READ statement with no DATA
statement remaining

4. Assigning a string value to a numeric
variable in a READ statement

5. Line-number in RESTORE statement
is greater than the highest line number
in the program

* FILE ERROR

1. Auempting to CLOSE, INPUT,
FPRINT, or RESTORE a file not
currently open

2. Attempting to INPUT records from a
file opened as OUTPUT or APPEND

3. Artempting to PRINT records on a file
opened as INPUT

4. Attempting to OPEN a file which is
already open

* INCORRECT STATEMENT

General
1. Opening "(", closing)", or both missing
2. Comma missing
3. No line number where expected in a
BREAK, UNBREAK. or RESTORE
(BREAK 100)
4. "+" or " =" not followed by a numeric
eXpression
5. Expressions used with arithmetic
operators are not numeric
6. Expressions used with relational
operators are not the same type
7. Attempting (o use a string expression as
a subscript
%. Attempting to assign a value to a
function
9. Reserved word out of order
10. Unexpected arithmetic or relational
operator is present
11. Expected arithmetic or relational
opcrator missing

Buiit-in Subprograms

12. In JOYST. the x-return and y-return are
not numeric variables

13. In KEY. the key-status is not a numeric
variable

14. In GCHAR, the third specification must
be a numeric variable

15. More than three tone specifications or
more than one noise specification in
SOUND

16. CALL 1s not followed by a subprogram
name

User's Reference Guide

Error Messages

File Processing-Input/Qutput Statements

17. Number sign (#) or colon () in file-
number specification for OPEN.
CLOSE, INPUT, PRINT, or
RESTORE is missing

18. File-name in OPEN or DELETE must
be a string expression

19 A keyword in the OPEN statement is
invalid or appears more than once

20. The number of records in
SEQUENTIAL option is less than zero
in the OPEN statement

21. The record length in the FIXED option
in the OPEN statement is less than zero
or greater than 255

22. A colon () in the CLOSE statement 1s
not followed by the keyword DELETE

23. Print-separator (comma, colon,
semicolon) missing in the PRINT
statement where required

24, Input-prompt is not a string expression
in INPUT statement

25, File-name is not a valid string
expression in SAVE or OLD

command

General Program Statements

FOR

26. The keyword FOR is not tollowed by a
numeric variablc

27. In the FOR statement. the control-
variable is not followcd by an cquals
sign (=)

28. The keyword TO is missing in the FOR
statcment

29 In the FOR statement, the fimrt is not
followed by the end of line or the
keyword STEP

iF

30. The keyword THEN is missing or not
followed by a line number

LET

31. Equals sign (=) missing in LET
statement

NEXT
32. The kevword NEX'T is not followed by
control-variable

ON-GOTO,ON-GOSUB

33. ON is not bllowed by a valid numeric
expression

RETURN

34. Unexpected word or character following
the word RETURN

{/ser-Nefined Functions

35. The number of function arguments does
not match the number of parameters for
a user-defined function

* INPUT ERROR

1. Input data 1s too long for Input/Output
buffer (if data entered from keyboard.
this is only a warning — data can be re-
entered)

2. Number of variables in the variable-list
does not match number of data items
input from keyboard or data file
{warning only if from keyboard)

3. Non-numeric data INPUT for a
numeric variable. This condition could
be caused by reading padding
characters on a file record. (Warning
only if from keyboard)

4. Numeric INPUT data produces an
overflow (warning only if from
kevhoard)

* /0 ERROR — This condition generates an
accompanying crrotr code as follows:

When an [0 error occurs, a two-digit error
code (XY) is displayed with the message:

* /O ERROR XY IN fine-number

The first digit (X} indicates which 17O
operation caused the error.

X Value Operation

OPEN
CLOSE
INPUT
PRINT
RESTORE
OLD

SAVE
DELETE

SO s Wk S

User's Reference Guide

[1i-11

Error Messages

The second digit (Y) indicates what kind of

error occurred.

Y Value Error Type

(¢ Device name not found (Invalid
device or file name in DELETE,
LIST. OLD. or SAVE command)

1 Device write protected {Attempting
to write to a protected file)

2 Bad open attribute (One or more
OPEN options arc illegal or do not
match the file characteristics)

3 lllegal operation (Input/output
comimand not valid)

4 QOut of space {Attempting to write
when insufficient space remains on
the storage medium)

5 End of file (Attempting to read past
the end of a file)

6 Device error {Device not connected,
or is damaged. This error can occur
during file processing if an
accessory device is accidentally
disconnected while the program 1s
running.)

7 File error (The indicated file does
not exist or the file type — program
file or data file — doecs not match the
access mode.)

* MEMORY FULL

1. Not enough memory to allocate the
specified character in CHAR statcment

2. GOSUB statement branches to 1ts own
line-number

3. Program contains too many pending
subroutine branches with no RETURN
performed

4. Program contains too many uscr-defined
functions which refer to other user-
defined functions

5. Relational, string, or numeric
expression too long

6. User-defined function references itself

* NUMBER TOO BIG (warning given — value
replaced by computer limit as shown below)

1. A numeric operation produces an
overfiow (value greater than
0.0000000000000FK 127 or less than
—9.9999994999090E127)

2. READing from DATA statement results
in an overflow assignment to a numenic
variable

3. INPUT results in an overflow
assignment to a numeric variable

* STRING-NUMBER MISMATCH

1. A pon-numeric argument specified for a
built-in function, tah-function, or
exponentiation operation

2. A non-numeric value found in a
specification requiring a numeric value

3. A non-string value found in a
specification requiring a string value

4. Function argument and parameter
disagree in type. or function type and
expression type cisagree for a user-
defined function

5. File-number not numeric in OPEN,
CLOSE, INPUT, PRINT, RESTORE

6. Attempting to assign a string to a
numeric variable

7. Attemipting to assign a number to a
string variable

Note: Additional error codes may occur when
you are using various accessories, such as the
T1 Disk Memory System or Solid State
Thermal Printer. with the computer. Consult
the appropriate device owner's manual for moure
information on these error codes.

IV. Error Returned When an OLD Command
Is Not Successful

*CHECK PROGRAM IN MEMORY

The OLD command does not clear program
memory unless the loading operation is
successful. If an OLD command fails or is
interrupted. however, any program currently in
memory may be partially or completely
overwritten by the program being loaded.
LIST the program in memory before
proceeding.

I11-12

User's Reference Guide

Accuracy Information

Displayed Resuits Versus Accuracy

Computers, like all other devices, must operate
with a fixed set of rules within preset limits. The
T1 computer uses especially powerful internal
notation to represent numbers.

The mathematical tolerance of the computer is
controlled by the number of digits it uses for
calcutations. The computer appears to use 10
digits as shown by the display, but actually uses
muoie to perform all calculations. When rounded
for display purposes, these extra digits help
maintain the accuracy of the values presented.
Example:

4 X3 =.9999999999 (inaccurate)

The example shows that s =.3333333333,
when multiplied by 3, produces an inaccurate
answer. However, a 13-digit string of nines,
when rounded to 10 places, will equal

1.0000000000.

The higher order mathematical functions use
iterative and polynomial calculations. The
cumulative rounding error is usually maintained
below the 10-digit display so that no effect can
be seen. The 13-digit representation of a
number is three orders of magnitude from the
displayed tenth digit. In this way the display
assures that results are rounded accurately to
ten digits.

Normally there is nu ueed to even consider the
undisplayed digits. On certain calculations, as
with any computer, these digits may appear as
an answer when not expected. The
mathematical limits of a finite operation (word
length. truncation and rounding errors) do not
allow these digits to always be completely
accurate. Therefore, when subtracting two
expressions which are mathematically equal, the
computer may display a nonzero result.
Example:

X=i—1h—14

PRINT X

1E—-14

The final result indicates a discrepancy in the
fourteenth digit.

The abhove fact is especially important when
writing your own programs. When testing a

calculated result to be equal to another value,
precautions should be taken to prevent
improper evaluation. For the above example,
the statement X =1E - 10%IN'T\X*1E10)) will
truncate the undisplayed digits ol the variable X
leaving only the rounded display value for
further use.

Technical Information on Number
Representation

Technically speaking., your computer uscs a
7-digit Radix-100 mantissa for internal
calculations. A single Radix-100 digit has a
range of value from 0 to 99 in base-10
arithmetic. This means that a 7-digit Radix-100
number will correspond to decimal precision of
13 to 14 digits, depending on the value.

Radix-100 exponents range in value from — 64
to +63 which vield decimal values of 10-128to
10+126, The Radix-100 mantissa and exponent
combine to provide an equivalent decimal range
of from —9.9999999999999E127 through
—1.0000000000000E —128; zero; and then
+1.0000000000000E —128 on through
+3.9999099999099FE 12 7.

The internal format of each numerical value
consists of eight bytes. The first byte contains
the exponent and its sign, biased by 40 hex. The
remaining bytes contain the mantissa, with the
most significant digit first. The number is
normalized so that the decimal point is
immediately after the most significant digit. If
the number is negative, then the first two bytes
are complemented.

Examples:

1. The number 127, is represented as:

EXP MSD LSD
41 01 1B 00 00 00 00 00

2. The fraction 0.5, is represented as:
3F 32 00 00 00 00 00 00
3.a) The value of 7/2 is represented as:
40 01 39 07 60 20 43 SF
b) The value of —7/2 is:
BF FF 39 07 60 20 43 5F

User's Reference Guide

11113

Applications Programs

Introduction

The programus i this section are designed to illustratc the use of
many of the statements in TI BASIC. If you've never had any
experience with programming, the best place to begin learning
about TI BASIC is the Beginner's BASIC book included with your
computer. When you've fimshed reading and working through the
programs in that book, these programs will provide additional help
in more complex programming. If you've had some experience in
programming, these programs will provide a demonstration of many
of the T1 BASIC features.

The programs included here begin at a simple level and
progressively become more complex. Thus, you can begin at
whatever level you want. Most of the programs employ the color
graphics and sound capabilities of the computer. These should
provide you with a good basis for designing your own graphics and
adding sound to your programs.

II-14

User's Reference Guide

Random Color Dots

This program places random color dots in random locations on the
screen. In addition, a random sound is generated and played when
the dot is placed on the screen.

The RANDOMIZE statement causes a different sequence of
numbers to be generated each time the program is run. The CALL

CLEAR statement clears the screen.,

This loop assigns each color code (2 through 16) to a different
Charactersct(codesilthrough 16).

These statements generate a random musical frequency for the
CALL SOUND statement. Statement 170 generates notes from the
tempered (twelve-tone) scale.

These statements generate a random character in the range of 40
through 159 and a random row and column location. (The color of
the dot depends on the character set of the randomly chosen
character.)

These statements produce the sound and place the solid color dot
on the screen. Then the program loops back to generate a new
sound, color dot, and location.

Examples:

>NEW

>100
>110
>120

>130
>140
>150

>160
170

>180
>190
>200

>210
>220

>230
>RUN

REM RANDOM COLOR DOTS
RANDOMIZE
CALL CLEAR

FOrR €=2 TD 16
CALL COLDORCC.C.I)
NEXT C

N=INT(Z24*RND)+1
Y=T10*%{2A01/72) AN

CHAR=INT(120*RND)+40
ROW=INT(24*RND)+1
COL=INT(32*RND)+1

CALL SDUND(-500,Y,2)
CALL HCHAR(RDH,COL,CHAR)

GOTO 160

== screen clears

--random color dots appear
en the screen al different
locations

{Press CLEAR to stop
the program}

User’s Reference Guide

[1I-15

Inchworm

This program creates an inchworm that moves back and forth
across the screen. When the inchworm reaches the edge of the
screen, an “uh-oh” sounds, and the inchworm turns around to go
in the opposite direction.

These statements allow you to enter a color for the inchworm {color
codes 2-3. 5-16 are recommended). The screen is then cleared. The
CALL COLOR statement assigns the color you selected to
character set 2. XDIR 1s used to designate which direction the
inchworm moves { +1 indicates right and —1 indicates left).

This loop moves the inchworm across the screen. Line 180

computes where the next block is to be displayed and line 190
places the new block on the screen. The DELAY loop governs how

fast the inchworm moves across the screen. Line 220 erases the old
color block (so a continuous line won't be drawn) by placing a blank
space over the block previously displayed at XOLD. Line 230
saves the current block position so a new one can then be
computed. The loop is repeated until the inchworm reaches the
edge of the screen.

Line 250 reverses the direction of the inchworm. Lines 260 and
270 produce the "uh-oh™ sound. Then line 280 causes the loop to be
performed again.

Examples:

>NEW

>100
>110
>120
>130
»140
>150
>160

>170
>180
>190
>200
»>210
>220
>230
2240

»250
>260
>270
>280
>RUN

-=s5creen

REM 1NUHWORM

CALL CLEAR

INPUT "COLGR? ":C
CALL CLEAR

CALL COLOR{(Z2,C,C)
Xx0Lp=1

XpIR=1

FOR I=1 70 31
XNEW=XOLD+XDIR

CALL HCHARCI12,XNEW,42)
FOR DELAY=1 TO 200
NEXT DELAY

CALL HCHAR(1Z,x0LD,32)
XOLD=XNEW

NEXT I

XDIR=-XDIR

£ALL SOUND(100,392,2)
caLL sOuUND{100,330,2)
GOTOD 170

¢lears

cCOLOR? 7

==s5creen

clears

-—inchworm moves back and

forth across

the screen

{Press CLEAR to stop
the program)

IlI-16

User's Reference Guide

Marquee

This program puts a marquee on the screen. The colors are
produced randomly, and a tone sounds each time a color bar is
placed on the screen.

These statements clear the screen and assign each character set (2
through 16) to a different color. The RANDOMIZE statement
ensures that a different set of colors will be produced each time the
DPrOgranm is rumn.

These statements produce a border for the marquee.

This loop places color bars on the sereen moving from left to right
(columns 3 through 30). Each time a bar is placed on the screen. a
tone sounds. The negative duration allows the sound to be cut off
and a new sound to begin each time the CALL SOUNI statement
is performed. The subroutine beginning at line 310 generates the
random colors and tones.

This loop is the same as the loop in lines 200 through 240 except
that the color bars are placed on the screen moving from the right
to the left. These color bars are placed below thosc gencrated by

the previous loop. When the loop is finished, the program transfers
to line 200 to begin at the left again.

This subroutine generates a random character (thus also generating
a random color) for the CALL VCHAR statements (lines 220, 270).
The assignment statements in lines 320 and 330 generate a random
tone. The RETURN statement transfers the program to the
statement following the GOSUB (lines 210, 260).

Examples:

>NEW

>100
*110
>120
>130
>140
>150

>160
>170
>180
>190

>200
2210
»220
>230
>244

>250
»>260
»270
>280
>290
>300

>310
>32Q
>330
>340
>RUN

REM MARQUEE
RANDOMIZE

CALL CLEAR

FOR $=2 TO 16
CALL COLOR(S,S,S)
NEXT S

CALL HCHARC(7,3,64,28)
CALL HCHAR(16,3,64,28)
CALL VCHARC/,Z,84,107
CALL VCHAR(7,31,64,10)

FOR A=3 TO 30
G0suB 310

CALL VCHAR(S,A,C,4)
cALL SOUND(=150,Y,2)
NEXI A

FOR A=30 1O 3 STEP -1
cOsuB 310

CALL VCHARC1Z2,A,C 42
CALL SDUND(-150,Y,22
NEXT A

cOT0 200

C=INT(120%RND)+40
N=INTC(24*RND}+1
Y=220%x(2A01/12))AN
RETURN

--screen clears

==marquee appears

{Press CLEAR to stop
the program)

User's Reference Guide

II-17

Secret Number

This program is a secret number game. The object is to guess the
randomly chosen number between 1 and an upper limit you input.
For each guess, you enter two numbers: a low and a high guess.
The computer will tell you if the secret number is less than, greater
than, or between the two numbers you enter. When you think you
know the number, enter the same value for both the low and high
guesses.

The RANDOMIZE statement ensures a different sequence of
numbers each time the program is run. MSG1$ and MSG2$ are
repeatedly used in PRINT statements. The CALL CLEAR
statement clears the screen.

The INPUT statement stops the program and waits for you to enter
a limit. Then the secret number is generated. and the screen is
cleared. N is used to keep track of the number of guesses you
make.

This INPUT statement accepts your low and high guesses. If you
enter the same number for both guesses and you guess the secret
number, the program transfers to line 300. If the secret number is
less than your low number, the program transfers to line 260. If the
secret number i1s greater than your high number, the program
transfcrs to line 280. If the secret number is between your two
numbers or equal to one of your numbers. the program continues.

These statements print a message to tell you where the secret
number is in relation to your guesses. Then the program transfers
to line 180 to allow you to guess again. If you guessed the secret
number, the compnter tells you how many guesses you took.

Examples:

>NEW

>100 REM SECRET NUMBER
>110 RANDOMIZE
>120 MSG1$="SECRET NUMBER IS"

>130 MSG62%="YOUR TWO NUMBERS"

>140 CALL CLEAR

>150 INPUT "ENTER LIMIT? ":L]
MIT

>160 SECRET=INT{(LIMIT*RND)+1
>170 CALL CLEAR

>180 N=N+1

>190 INPUT "LOW,HIGH GUESSES;:
":LOW,HIGH

>200 IF LOW<>HIGH THEN 220

2210 1F SECRET=LOW THEN 300

>220 IF SECRET<LOW THEN 260

>230 1F SECRET>HIGH THEN 280

>240 PRINT MSGT13R" BETWEEN":M
5G2%

>250 c0T0 180

>260 PRINT MSGT$&"™ LESS THAN"
IMSGZ2S$

>270 6OGTO 180

>280 PRINT MSG1%&" LARGER THA
N'":M5G2%

»>290 6OTG 180

>300 PRINT *“YDU GUESSED THE S
ECRET"

>310 PRINT "NUMBER IN ";N;"TR
1ES”

1l1-18

User's Reference Guide

Secret Number

These statements offer you the choice of playing again or stopping
the program. If you enter any character ather than Y, the program
ends. If you wish to play again, the counter for the number of
guesses is set to zero, and you are asked if you want to set a new
limit If you enter Y, the program transfers back to line 140 If yvou
enter any other character, the program transfers to line 160 to
generate a new secret number.

Here is a sample of the program run. (Of course. your secret
numbers will be different from the one shown here.)

Examples:

>320 PRINT "WANT TO PLAY AGAI
N?"

»330 INPUT "ENTER Y OR N: ":A
%

>340 IF A$<>"Y" THEN 390

>350 N=0

>360 PRINT "WANT TO SET A NEW
LIMIT?"

>370 INPUT "ENTER ¥ DR N: ":B
$

>380 IF B%="Y" THEN 140 ELSE
1460

>390 END

>RUN
--s¢reen clears
ENTER LIMIT? 20

--screen clears

LOW,HIGH GUESSES: 1,10
SECRET NUMBER IS BETWEEN
YGUR TWO NUMBERS

LOW,HIGH GUESSES: 1,5
SECRET NUMBER IS LARGER THAN
YOUR TW0O NUMBERS

LOW,HIGH GUESSES: 7,7
YOU GUESSED THE SECRET
NUMBER IN 3 TRIES
WANT TO PLAY AGAIN?
ENTER Y OR N: N

x% DONE **

User's Reference Guide

[1-19

Bouncing Ball

This program moves a ball and bounces it off the edges of the Examples:
screen. Each time the ball hits any side, a tone sounds, and the ball
1s deflected. The following special character is used to define the

ball.
Block
Codes
XIXIX[X ac
XXX XXX 7E
XIXIXiX[x[x|X[X FF
XXIXIXIXIXIX]|X FF
XIXIX[X{XIXIX[X FF
XIXIXIXXIXIXIX FF
XX [X[X]X[X 7E
XXIXX ki
PNEW
These statements clear the screen and define character 96 as the >100 REM BOUNCING BALL
ball. >110 CALL CLEAR .
7120 CALL CHAR(94,"3CTEFFFFFF
FFPE3C™

*>130 INPUT "BALL COLOR? ":(

These statements allow you to input the color of the ball and the 5120 INPUT "SCREEN COLDR? ":§

screen background color. Note that defining the screen color by
using character set 1. which includes character 32 {the blank >150 CALL CLEAR

: o i ey b >160 CALL COLOR(9,(,S)
space), gives definite limits for the screen edge. The screen 13 5170 CALL COLORCT.S.8)
cleared when the colors have been entered.

These statements give the starting position for the ball and set the >180 X=16

parameters which will control the X and Y direction. 2190 v=12
>200 XDIR=1

»210 YDIR=1

These statements compute the next ball position. The direction the »220 X=X+XDIR
ball moves depends on the current values of XDIR (+1 indicates >230 Y=YV4YDIR
right, —1 indicates left) and YDIR (+1 indicates up. —1 indicates

down).

These statements test to see if the new ball position is still on the »>240 IF X<1 THEN 310
If either th {Y) 1 (X) value is out of >250 IF X>32 THEN 310

screen. If either the row or column value is out of range, 5260 IF Y<1 THEN 360

then the program transfers to line 310 (column out of range) or line 270 IF Y>24 THEN 360

360 (row out of range) to change the ball direction.

IHI-20 User’s Reference Guide

Bouncing Ball

If the new ball position is still on the screen, then the screen is
cleared to erase the old ball location. The hall is then displayed at
the new location designated by Y and X.

These statements change the direction of the ball it X is out of
range. The CALL SOUND statement produces the "bouncing”
tone. Lines 330 and 340 check to see if Y is also out of range. [f 1t
is, the program transfers to change the Y direction. If not. the
program transfers to line 220 to compute a new ball position.

These statements change the direction of the ball if Y is out of
range. The CALL SOUND statement produces the "bouncing”
tone. The program then transfers to line 220 to compute the new
ball pesition.

Examples:

>280
>2%0
>300

>310
>320
»330
>340
>350

>340
>370
>380
>RUN

CALL CLEAR
CALL HCHARCY,X,96)
GOTO 220

XDIR=-XDIR

CALL SOUND(30,380,2)
IF Y<1 THEN 360

IF Y>24 THEN 360
GDTO 220

YDIR=-YDIR
CALL SOUND(30,380,2
GOTO 220

~--screen clears

BALL COLOR? 5
SCREEN COLOR? 15

--ballt appears in center of
screen and begins bouncing

{Press CLEAR to stop
the program}

Users Reference Guide

[11-21

Checkbook Balance

Once each month all of us have the opportunity to tackle
“balancing” our checkbooks against our bank statcments.
Normally, the checkbook balance will not agree with the balance
shown on the bank statement because there are checks and
deposits that haven't cleared yet. This program will help you
balance your checkbook quickly and easily.

These statements clear the screen and allow you to input the
balance shown on your bank statement,

These statements give instructions for entering your outstanding
check numbers and amounts. Note that DISPLAY and PRINT
can be used interchangeably.

This loop sets up the procedure for entering each check number
and amount. These values are stored in arrays. If the check number
equals zero, the program transfers out of the loop. CTOTAL is the
total amount of outstanding checks. Each time a check amount is
input, the program transfers o line 190 (o input another check
number and amount.

These statements give instructions for entering your outstanding
deposits.

This loop asks for and accepts each outstanding deposit amount. If
the deposit amount cquals zero, the program transfers out of the
loop. DTOTAL is the total amount of outstanding deposits. After
each outstanding deposit 1s added to the total, the program
transters to line 310 to accept another deposit amount.

Examples:

>NEWMW

>100 REM CHECKBOOK BALANCE

>110 CALL CLEAR

>120 INPUT "BANK BALANCE? ":B
ALANCE

>130 DISPLAY "ENTER EACH OUTS
ANDING"

>140 DISPLAY "CHECK NUMBER AN
O AMOUNT.™

>150 BISPLAY

>16Q0 DISPLAY "ENTER A ZERQO FO
R THE"

>170 DISPLAY "CHECK NUMBER WH
EN FINISHED.,"

>18¢ DISPLAY

>190 N=N+1

>200 INPUT "CHECK NUMBER? ":(
NUM{ND

>210 IF CNUM{N)=0 THEN 250
>220 INPUT "“CHECK AMOUNT? ":¢
AMT (ND

>230 CTOTAL=CTOTAL+CAMT(N)
>240 GOTO 190

>250 DISPLAY "“ENTER EACE OUTS
TANDING"
>260 DISPLAY "DEPDSIT AMOUNT.

>270 DISPLAY

>280 DISPLAY "“ENTER A ZERD AW
OUNT"

>290 DISPLAY "WHEN FINISHED."

>300 DISPLAY

>310 M=M+1

>320 INPUT "“DEPQSIT AMOUNT?
DAMT (M}

>330 IF DAMT(M)=0 THEN 360

>340 DTOTAL=DTOTAL+DAMT (M)

>350 GOTD 310

111-22

User's Reference Guide

Checkbook Balance

These statements compute and display the new balance. Then you
enter the current halance in ynur checkbonlk (Be sure you have
subtracted bank service charges before you enter the current
balance.) The correction necessary to make your checkbook agree
with the bank statement is then computed and displayed.

Here is a sample program run.

Examples:

>360 NBAL<BALANCE-CTOTAL+DTQY

AL

>370 DISPLAY

NBAL

>380 INPUT

7 ":CBAL

>390 DISPLAY

BAL-CBAL
>400 END

>RUN

==screen clears

BANK BALANCE? 940,26

ENTER
CHECK

ENTER
CHECK

CHECK
CHECK
CHECK
CHECK
CHECK
CHECK
CHECK
CHECK
CHECK
CHECK
CHECK
CHECK
CHECK
ENTER

EACH DUTSTANDING

"NEW BALANCE= ";
"CHECKBODK BALANCE

"CORRECTION= ":N

NUMBER AND AMOUNT.

A ZERO FOR THE
NUMBER WHEN FINISHED.

NUMBER?
AMOUNT?
NUMBER?
AMOUNT?
NUMBER?
AMOUNT?
NUMBER?
AMOUNT?
NUMBER?
AMOUNT?
NUMBER?
AMOUNT?
NUMBERY

EACH OUTSTANDING

212
T6.83
213
122.87
216
219.50
218
397.31
219
231.00
220
138.25
¢

DEFOSIT AMOUNT.

ENTER A £ERD AMOUNT

WHEN FINISHED.

DEPOSIT AMOUNT? 450
DEFQSIT AMOUNT? O
NEW BALANCE=

204 .5

CHECKBOOK BALANCE? 209.15

CORRECTION=

% DONE #*%

~4.65

User's Reference Guide

111-23

Codebreaker

Codebreaker is a game in which the computer generates a four-digit
code number, and you try to guess it. Zeros are not allowed, and no
two digits may be the same. Even with these restrictions, there are
3124 possible codes. making slim your chances of guessing the
number on the first try. Your puess is automatically scored by the
computer. Your score for each guess is displayed in the form "N.R,”
where N is the number of digits in your trial number that appear in
the secret number and are positioned correctly and R is the number
of digits in your guess which although correct. are improperly
placed. For example, if the number generated by the computer is
8261 and you guess 6285, you receive a score of 1.2, This indicates
that one number you guessed is in the right place (the 2) and that
two of your other numbers (8 and 6) are present in the secret
number, but not in the right place. A score of 4.0 indicates that
your guess 1S correct.

The RANDOMIZE statement ensures that a different number will
be generated each time the program is run. After the screen is
cleared. the computer generates the four-digit number. Note that
each digit is stored separately in the array, N. The [-loop beginning
at line 160 ensures that no two digits in the number generated are
the same. The number of tries is set to zero for each new four-digit
number generated.

The INPUT statement stops the program and waits for you to enter
your guess. Be sure to enter a four-digit integer number. Each time
you guess a number, the score is set to zero, and the number of tries
1s increased by onc.

Line 250 takes the last digit from the guess so that it may be
compared against the code number. If the digit matches the code
number in the same position, then the score is increased by 1. If
not, then the L-loop is used to compare the digit against the other
positions in the code number. If it matches any other position in the
code number, then .1 is added to the score. Line 340 eliminates the
last digit from the guess, so that the next digit can be taken for the
comparison. When all four digits have been compared. the program
continues at line 360,

Examples:

>NEW

100
>110
»>120
>130
>140
>150
>160
»>170
>180
>190
>200

»210

ESS
>22¢
»>230

»240
>250

REM CODEBREAKER GAME
RANDOMIZE

CALL CLEAR

FOR 1=1 TO 4
N({IX=INT(9*RND)+1

IF I=1 THEN 1%0

FOR J=1 TO I-1

IF NCIX=NCJ} THEN 140
NEXT J

NEXT I

TRIES=0

INPUT "ENTER GUESS? ":GU

SCDRE=0
TRIES=TRIES+1?

FOR K=4 TQ 1 STEP =1
DIGIT=(GUESS/T0-INT(GUES

5/102)=10

>260
>270
>280
>2%0
>300
>310
»320
»330
>340
>35¢

IF DIGIT<>N(K) THEN 290
SCORE=SCORE+1

GOTO 3490

FGR L=1 TD 4

IF N{L}<>DIGIT THEN 330
SCORE=SCORE+.1T

GO0TC 340

NEXT L
GUESS=INT(GUESS/10)
NEXT K

HI-24

User's Reference Guide

Codebreaker

These statements print the score for each guess. Strings are used in
displaying the score to insure that the score is always displayed in
the "N.R " format. If the score is an integer number, then a ".0" (line
370) must be added after the number. If the score 1s less than one,
then a "0 {line 400) must be added before the number. If the score
is a non-integer and greater than one, then just the score itself is
printed {line 420). If the score 1s not equal to 4, the program
transfers to line 210 to accept another guess.

These statements print the number of tries you took to guess the
code number. Then the computer asks if you want to play again. If
you enter Y, the program transfers to line 110 to generate a new
number. If you enter anything else, the program stops.

Here is a sample of a program run. {Of course, your code numbers
will be different.)

Examples:

>360 IF INT{SCORE)<>SCORE THE
N 390

>370 PRINT STRI(SCOREJIE".O™
»280 GOTO 430

>390 1F SCORE>1 THEN 420

>400 PRINT "Q0"&STR3(SCORE)
>410 GOTO 430

>420 PRINT STR${(SCORE)}

>430 IF SCORE<>4 THEN 270

»44Q0 PRINT "YOU TOOK “&STRS(T
RIESY&" TRIES TD GUESS"
>450 PRINT "THE CDDE NUMBER."

>460 DISPLAY "WOULD YQU LIKE
TO PLAY AGAIN"

>470 INPUT "ENTER Y OR N: ":A
3

>480 IF A$="Y" THEN 110

>490 END

>RUN
--screen clears

ENTER GUESS? 1234

0.1

ENTER GUESS? 5678

2.1

ENTER GUESS? 9238

1.0

ENTER GUESS? 5694

1.0

ENTER GUESS? 5198

2.1

ENTER GUESS? 5718

4.0

YOu TOOK 6 TRIES TO GUESS
THE CODE NUMBER.

WOULD YOU LIKE TO PLAY AGAIN
ENTER Y OR N: N

xk DONE %+

User's Reference Guide

IT1-25

Character Definition

This program allows you to define special graphics characters using
the computer. An 8 X 8 grid is displayed on the screen. You then
choose which "dots” to turn on and which to leave turned off. After
the character has been designed, the program determines and
displays the HEX string to be entered in the CALL CHAR
statement.

These statements define the off dot character {line 120) and the on
dot character (line 130). Black is used as the foreground color (on
dot) and white is used as the background color (off dot). The screen
is then cleared and the labels needed on the screen are displayed at
the necessary locations. Note that the subroutine beginning at line
770 is used to print a string horizontally on the screen and the
subroutine beginning at line 820 is used to print a string vertically
on the screen. The R-loop is used to place the 8 X8 grid (all dots
turned off)Jon the screen.

This loop allows you to turn the “dots™ either on or off. To turn a
dot on, press the 1 key. To leave a dot turned off, press the 0 key.
The cursor starts in the upper left corner (row 1. column 1) of the
grid. Each time you press a key, the dot is turned on or off and the
cursor moves to the next position. When the end of a row is
reached, the cursor automatically moves to the next row. When the
last "dot” is turned on or off, the program continues to determine
the HEX string, Line 430 performs a logical OR. If the key you
pressed was not a zero or a one, the program transfers back to line
370 to accept a new key input. Errors in the grid can be corrected
before the last dot (row 8, column 8) is entered by using the LEFT
arrow and RIGHT arrow keys. If either of these keys is pressed,
then the program transfers to the subroutine beginning at hine 870.
The subroutine moves the cursor in the appropriate direction and to
the next row up or down as necessary.

These statements determine the hexadecimal code for each row in
the grid. When the code is determined. character 102 is defined to
be the character shown on the large grid. The newly defined
character is then displayed on the screen at row 8. column 20. The
character i1s also displayed in a 3-by-3 pattern. Then the
hexadecimal code defining that character is displayed. Lines 630
through 720 print instructions on the screen for you to define a new
character. If you are finished defining characters. press Q and the
program stops. If you press any other key, the program transfers to
line 140 to clear the screen and begin again.

Examples:

*NEW
>100
>110

>120
>13Q

REM CHARACTER DEFINITION

DIM B(§,8)
CALL CHAR(100,"")
CALL CHARC101,"FFFFFFFFF

FFFFFFF™)

>140
>150
>160

CALL COLOR(9,2,16)
CALL CLEAR
ME="AUTO CHARACTER DEFIN

ITION"

>170
>184Q
>190
>200
>210
»>220
»230
>240
>250
»>260
»>270
>280
>290
»>300
>310
>320
>330
>340
>»350
>360
»370
>380
>390

¥=3

X=4

Ghsul 770
M$="12345678"

Y=8

GOSUB 770

60s5UB 820
ME="0=0FF=WHITE"

y=22

X=4

60SUB 770
ME="1=0N=BLACK"

¥=23

6OsUB 770

FOR R=1 TO 8

CALL HCHAR(B+R,5,100,8)
NEXT R

FOR R=1 TO 8

FOR C=1 TO 8

CALL HCHAR(B+R,44C,30)
CALL KEY(QO,KEY, 5TATLUS)
IF STATUS=0 THEN 370
IF (KEY<>B)+(KEY<>9)=-2

THEN 420

>400
>410
>4 20
>430
HEN
>44Q
>45Q
EY)
460
470

>480
>490
>500
>510

GOSUB 870

GOTO 3460

KEY=KEY-48

IF (KEY<O)+{KEY>1)<=-1 T
370

B{(R,C)=KEY

CALL HCHAR(B+R,4+C,100+K

NEXT C
NEXT R

HEX$="0123456789ABCDEF"
M$=Illl

FGR R=1 TO &
LOW=B{R,5)#8+B{R,6) *4+B(

R,7)*24B(R,8)+1

>520

HIGH=B(R,1)*B+B(R,2)*4+B

(R,3)%2+B(R,4)+1

»530

M$=MSRSEGS (HEXS,HIGH, 138

SEGS(HEXS,LOW, 1)

>540
>550
>560
>570
>580
)
>590

NEXT R
CALL CHARCTDZ,M$)

CALL HCHAR(S,20,102)

FOR R=0 7O 2

CALL HCHAR(12+R,20,102,3

NEXT R

i11-26

User's Reference Guide

Character Definition

These subroutines print a given string beginning at a specihed row
and column on the screen. Lines 770 through 810 print a string
horizontally. Lines 820 through 860 print a string vertically.

This subroutine is used to allow you to change the dots you have
turned on or off. First, the new cursor location is checked. If the
cursor is at the end of the line and the RIGHT arrow key is
pressed, the cursor moves to the left side of the next line down. If
the cursor i1s at the beginning of the line and the LEFT arrow key
is pressed, the cursor moves to the right side of the next line up. If
the cursor is at the upper left corner and the LEFT arrow key is
pressed. the cursor moves to the lower right corner. If the cursor is
at the lower right corner and the RIGHT arrow key is pressed, the
cursor moves to the upper left hand corner.

A sample of the screen for a program run is shown at the right.

Examples:

600 Y=16
»>610 %X=12

*620 6QsuB 770

»630 M$="PRESS Q@ TQ GUIT"™
>640 Y=18

>650 X=12

>660 0sUB 770

»>670 ME="PRESS ANY OTHER"
>680 Y=19

>690 GOSUR 770

>700 M$="KEY TO CONTINUE"
>71Q ¥Y=20

>720 ¢0suB 770

>730 CALL KEY(Q,KEY,STATUS}
>740 IF STATUS=0 THEN 730
>750 IF KEY<>B1 THEN 140
>760 STOP

>770 FOR I=1 TO LEN(MS$)
>780 CODE=ASC(SEGH(ME, I,1))
>790 CALL HCHAR(Y,X+I,CODE}
>800 NEXT I

>810 RETURN

>820 FOR I=1 TO LEN{MS$)
>830 CODE=ASC{(SEGE(ME,I, 1))
»840 CALL HCHAR(Y+I_ X, CODE)}
>850 NEXT 1

>860 RETURN

>870 CALL HCHAR(B+R,4+C,T00+B

(R, CI)
>8B0 IF KEY=9 THEN 960
>890 C=C-1

>200 IF C<>0 THEN 1020
>810 =R

>920 R=R-1

>930 IF R<>0 THEN 1020
>940 R=8

>950 6070 1020

>960 C=C+1

>Q70 IF C<>% THEN 120
>%80 C=1

>990 R=R+1

>1000 IF R<>% THEN 1020
>1010 R=1

>1020 RETURN

>RUN

-=-gs¢creen clears

"
r-AUTG CHARACTER DEFINITION

112345678 IC

2

3

4

5

é

4 FOFOFOFOFOFOFOFO

PRESS @ TO QUIT
U=0FF=WHITE PRESS ANY OTHER

Lj=DN=BLACK KEY TO CONTINUE

User's Reference Guide

11127

Graphics Match

This game program gives an example of developing special
graphics for your own use. There are six different graphics

characters defined. These are: heart, cherry, bell. lemon, diamond,

and bar. To play the game you need only to run the program. The
computer generates threc random numbers in the range 1 through
6. Each time a number is generated, the picture corresponding to
the number is displayed on the screen. Scoring depends on how
many and in what way the three pictures match. When the three
pictures and the score have been displayed, you are offered the
choice of playing again.

‘I'hese statements define the colors for each of the characters. The
colors used are:

Graphics

Character Color

Heart Medium Red

Cherry Medium Red with
Dark Green stem

Bell Light Blue with
Black handle

Lemon Dark Yellow

Diamond Dark Green

Bar Dark Blue

A white background is used for all of the pictures.

These statements define the heart.

Block Block
Codes Codes
00 00
00 00
1C XXX X[X]|X 38
3E XIX[XXX X XIX|X|X 7C
7F | IXIXIXIX X XXX X[X[X[X]X|X] | FE
7F XX XX XXX XX XX (XXX FE
7F | XXX XIX XXX X X[X]X[X|X] | FE
7F XIXIXIXIXXIXIXIXI XX XXX FE
3F HIX XXX XXX X[XX FC
1F XXX IXIXIX|IXIX[X]|X F8
OF XXX XXX XX FO
07 XIXIXIX|XIX EO
a3 XIXIXIX Co
0 XX 80
o0 00
00 00

Examples:

>*NEMW

>100 REM GRAPHICS MATCH

>110 CALL COLOR(?,7.,168)

5120 CALL COLOR{10,13,16)
5130 CALL COLOR(11,2,16)
>140 CALL COLOR(12,6,16)
>150 CALL COLOR(13,11,16)
>160 CALL COLOR(14,5,16)

>170 CALL CHAR(94,"00001TC3ETF
TETFTF™)

>180 CALL CHAR(97,"00Q0387CFE
FCLFEFE™)

>190 CALL CHAR(98,“3F1FOF0703
01"

>200 CALL CHAR(99,"FCFBFOEQCO
80")

111-28

User's Reference Guide

Graphics Match

Note that in lines 190 and 200, the last four zeros are omitted.
This saves time in entering the lincs since the computer
automatically fills the remaining length of the string with zeros.

These statements define the cherry.

Block Block
Codes Codes
00 00
00 00
00 06
00 X 08
00 X 10
1F XX XIX|X X 20
3F XXX X[X|X] X 40
7F XX XX X[XXX 80
7F XXX XXX XXX E0
7F XX XX XX XXX ([X]X FO
7F XXX XIXIXIX|X[X[X]X FO
7F NAX XX XXX IX[XXX FO
3F XX [XIXIX XX XXX FO
3F XX XXX XIX[X{X EO
1F XX XIX XXX Co
00 00

These statements define the bell.

Block Block
Codes Codes
00 00
00 00
01 XX 80
01 XX 80
01 X|X 80
0] X|X 80
01 XX 80
01 XX 80
03 X XXX CO
07 XIXXIXIX X EO
07 XX X[X|X]|X E0
07 XIXXIX|I XX EO
07 X[XXI[X[X[X ED
OF XX XXX X[X|X EO
07 NI XXIXIX|X EO
01 XX 80

Examples:

>210 CALL CHAR(100,"000000000
O1F3F7F™)

>220 CALL CHAR(C104,"000006081
0204Q80'")

2230 CALL CHARCIO1, "7F7F7F7F3
F3FTF™)

>240 CALL CHARC1Q0Z2,"EOFOFQFOQOF
QEOCO™)

>250 CALL CHAR(112,"000001010
1010101"™)

>260 CALL CHAR(113,"000080808
0808080")

>270 CALL CHAR(120,%030707Q70
7OFO701")

>280 CALL CHAR(121,"CCEDEOQEOQE
OFOEORO™)

User's Reference Guide

I11-29

Graphics Match

These statements define the lemon.

Block Block
Codes Codes
00 00
00 00
00 00
(3 X[X|X|X Co
OF XXX X| X[XXX FO
1F XX X[XXX XIXIXIX Fs
3F XX XX X[X[X[X[X]X[X]X FC
FF X XIXIX[X] X[X [X[X]X[X[X]X][X]X]X] FF
FF (XX XIX|X[XXIXIX[XIXIXIXIXIX]X] FF
3F XXX XX X[XXX XX FC
1F XXX XXX X[XXX F8
OF XIXX[X[X[XIX[X Fo
03 XIXIX|X Co
a0 00
o0 oo
00 00

These statements define the diamond.

Block Block
Codes Codes
00 00
U1 XX 80
03 XIX|X|X Co
07 XIXIX|XIX[X EQ
OF X X[XXX X[X[X FO
1F XXX XiX|XiX|X]|X|X F8
3F XX [X[X[XIX[X[X[X[X[X[X FC
7H XXX XX XXX X|X[X[X|X[X] |FE
7F XXX XIXIXIXIXIX{IX[X|X|X]|X] |FE
3F XIX[XX XIXIX[XIX|X|X{X FC
1F XXX IXIXX[X]XIXIX F8
OF XIXXIXIX|I XXX Fo
07 XIXXIXX|X E0
03 XXX X Co
01 XX 80
00 00

Examples:

>290 CALL CHAR(128,"000000030
F1F3FFF™)

>300 CALL CHAR(C129,"000000COF
OF8FCFF™)

>310 CALL CHARCI30,"FF3F1FOFQ
3")

>320 CALL CHARCI31,"FFFCFBFOC
o)

>330 CALL CHARCID5."000103070
FIF3F7F™)

>340 CALL CHARCI06,"Q080COEQF
OFBFCFE")

>350 CALL CHAR(TO7,"7F3F1FOQFOQ
70301")

>360 CALL CHAR{108,"FEFCF8FOE
acogo™)

I11-30

User's Reference Guide

Graphics Match

These statements define the bar. Examples:
>370 CALL CHAR(136,"000000000
Block Block 03F3F3F")
Codes Codes >380 CALL CHAR(137,"000000000
orererce™
0 " e et e o
00 00 ’
00 00
00 00
00 00
3F XXX X[X[X[XX X[XXX FC
3F XXX XX XX X X[XXX FC
3F XIXIXIXIX| XIX|X| XXX |X FC
3F XIXI X[X[X[X]X]| X[X|X]|X[X FC
3F XXX XX XXX | X[XXX FC
3F XXX X[XIX|IX[X| X[XXX FC
00 VY]
00 00
00 00
00 00
00 00
The RANDOMIZE statement insures that a different sequence of >410 RANDOMIZE
pictures is generated each time the program is run. The variable C ;zgg Eﬂl{t CLEAR
indicates the starting column location for the next picture. The - >440 FOR I=1 TO 3
loop generates a random number between 1 and 6, inclusive. The zzzg Z;C;ﬁ?i’;”égzﬁg“;z; 000
ON-GOSUB statement (line 460) transfers the program to the 960,1020,1080,1140 s
appropriate subroutine to place the picture on the sciee. The >4T0 C=C+E
pictures are displayed according to the following values: 2480 NEXT I
PIC) Picture
1 Heart
2 Cherry
3 Bell
4 Lemon
5 Diamond
6 Bar
After the picture is placed on the screen, the program returns to the
loop to generate a new number and picture. When three pictures
are displayed. the program continues to score the results.

User's Reference Guide 111-31

Graphics Match

These statements determine the score you receive, as outlined in
the table below. The line number indicates the line to which the
program transfers to award the points.

Line
Match Points Number
All pictures alike Win 75 700

First two pictures, a Win 40 550

cherry, lemon, or bar

First two pictures a Win 10 650
heart. bell, or diamond
First and last pictures alike Win 10 650

No match or last two pictures alike Lose 10 610

These statements add 40 points to the accumulated score. Three
tones sound and a message 1s displayed on the screen to indicate
you have won a bonus worth 40 points. The program then transfers
to line 770 to display the total points accumulated.

In line 61{}, ten points are subtracted from the total score. A tone
sounds and a message is displayed to indicate you have lost ten
points. The program then transfers to line 770 to display the new
score.

In these statements, ten points are added to the total score. To
indicate that vou have won ten points, two tones sound and a
message is displayed. Then the program transfers to line 770 to
display the new score.

These statements add 75 points to the total score. Five tones sound
and a message indicating that you have won the jackpot is
displayed.

The PRINT statement in line 770 prints your current score. The
other statements offer you the choice of playing again or stopping
the program. The CALL KEY statement (line 800} accepts an
answer without your having to press ENTER. Pressing the ¥ key
instructs the program to transfer back to line 410 to generate three
new pictures. Pressing any other key stops the program.

Examples:

*490 REM SCORING
>500 IF PIC(1X<>PICC(Z2) THEN 5

20
%510 IF PIC{2)-PIC(3) THEN 70
0 ELSE 540
>520 1F PICCI)<>PIC(3) THEN 6
10

>530 g0T0d 450
2540 IF PICCI13/2<>INTLPLCCI}/
2) THEN 650

>550 TOTAL=TOTAL+40

>560 CALL SOUND(100,440,2)
>570 CALL SOUND(100,660,2)
>58¢ CALL SOUND(100.550.2)
>590 PRINT "BONUS--40 POINTS"

>600 6OTO 770

>610 TUTAL=TUTAL-10

>620 CALL $OUND{100,110,1)
»>630 PRINT "LOSE 10 POINTS"
>640 GOTO 770

>650 TOTAL=TOTAL+10

>660 CALL SOUND{(100,660,2)
>670 CALL SOUNDC100,770,2)
>680 PRINT "WIN 10 POINTS"™
>690 GOTO 770

>700 TOTAL=TOTAL+75

>710 CALL SOUND(100,640,2)
>720 CALL SOUNDS100,550,27
>730 CALL SOUND(100,440,2)
>740 CALL SOUNDC100,660,2)
>750 CALL SOUND(100,880,22
2760 PRINT "JACKPOT!--75 POIN
TS“

>770 PRINT “CURRENT TOTAL POI
NTS: ":TOTAL

>780 PRINT "WANT TO PLAY AGAI
NTT

>790 PRINT "PRESS Y FOR YES"
>800 CALL KEY(O,KEY,STATUS)
>810 IF $STATUS=0 THEN 800
>820 IF KEY=89 THEN 410

>B30 END

I11-32

User's Reference Guide

Graphics Match

These six subroutines print each of the six pictures. The RETURN Examples:
statements are used so that only one picture will be printed for each
call to a subroutine. >840 REM PRINT HEART

>850 CALL HCHAR(12,C,96)
»>860 CALL HCHAR(CIZ,C+1,57)
>870 CALL HCHARC(13,¢,98)
>880 CALL HCHARC13,C+1,99)
>890 RETURN

>900 REM PRINT CHERRY

>910 CALL HCHAR(12,C,100)
320 CALL HCHARC12,C+1,104)
>930 CALL HCHAR(13,C,101)
>340 CALL HCHARC(13,C+1,102)
>950 REIURN

>960 REM PRINT BELL

>970 CALL HCHAR(12,C,112)
>380 CALL HCHAR{(12,C+1,113)
»990 CALL HCHARC(13,C,120)
>1000 CALL HCHAR{13,C+1,121)
>1010 RETURN

»>1020 REM PRINT LEMON

21030 CALL HCHARC12,C,1282
>1040 CALL HCHAR(12,C+1,129)
>1050 CALL HCHAR(13,¢,130)
>1060 CALL HCHARC13,C+1,131)
>1070 RETURN

>1080 REM PRINT DIAMOND
>1090 CALL HCHAR(12,C,105)
>1100 CALL HCHARC12,C+1,106)
>1110 CALL HCHAR(13,¢€,107)
>1120 CALL HCHAR(13,€+1,108)
>1130 RETURN

>1140 REM PRINT BAR

>115%0 CALL HCHARC(12,€,136)
1160 CALL HCHARC12,C+1,137)
>1170 CALL HCHAR(C13,C,138)
51180 CALL HCHAR(13,£+1,139)
>1190 RETURN

User's Reference Guide 111-33

Graphics Match

Here is a sample program run. Note that the computer screen Examples:
remains cyan while the computer generates the symbaol table and
scans the program for errors. This takes about a minute. >RUN

~=screen clears

"

. _J
--two tones sound

4 ™

Vevw

WIN 10 POINTS

CURRENT TOTAL POINTS: 10

WANT TO PLAY AGAIN?
kLPRESS Y FOR YES

PRFSS Y FOR YES N

x% DONE #x

111-34 User's Reference Guide

Glossary

Accessory devices — additional equipment
which attaches to the computer and extends its
functions and capabilities. Included are
preprogrammed Command Modules* and units
which send, receive or store computer data,
such as printers and disks. These are often
called peripherals.

Array — a collection of numeric or string
variables, arranged in a list or matrix for
processing by the computer. Each element in an
array 1s referenced by a subscript* describing 1ts
position in the list.

ASCII — the American Standard Code for
Information Interchange, the code structure
used internally in most personal computers to
represent letters, numbers, and special
characters.

BASIC — an easy-to-use popular programming
language used in most personal computers. The
word BASIC is an acronym for "Beginners All-

purpose Symbolic Instruction Code.”

Baud — commonly used to refer to bits per
second.

Binary — a number system based on two digits,
0 and 1. The internal language and operations
of the computer are based on the binary system.

Branch — a departure from the sequential
performance of program statements. An
uncenditional branch causes the computer to
jump to a specified program line every time the
branching statement is encountered. A
conditional branch transfers program control
based on the result of some arithmetic or logical
operation.

Breakpoint — a point in the program specified
by the BREAK command where program
execution can be suspended. During a
breakpoint, you can perform operations in the
Command Mode* to help you locate program
errors. Program execution can be resumed with
a CONTINUE command, unless editing took
place while the program was stopped.

Buffer — an area of computer memory for
temporary storage of an input or output record.

*See dehnition 1in Glossary.

Bug — a hardware defect or programming error
which causes the intended operation to be
performed incorrectly.

Byte — a string of binary* digits (bits) treated as
a unit, often representing one data character®.
The computer's memory capacity is often
expressed as the number of bytes available. For
example, a computer with 16K bytes of wemury
has about 16,000 bytes available for storing
programs and data.

Character — a letter, number, punctuation
symbol. or special graphics symbol.

Command — an instruction which the computer
performs immediately. Commands are not a
part of a program and thus are entered with no
preceding line number.

Command Mode — when no program 15
running. the computer is in the Command (or
Immediate} Mode and performs each task as it
1s entered.

Command Modules — preprogrammed ROM*
modules which are easily inserted in the T1I
computer to extend its capabilities.

Concatenation — linking two or more strings*
to make a longer string. The "8 is the
concatenation operator.

Constant — a specific numeric or string* value.
A numeric constant is any real number, such as
1.2 or —9054. A string constant is any
combination of up to 112 characters enclosed in
guotes, such as "HELLO THERE" or "275
FIRST ST."

Cursor — a symbol which indicates where the
next character®* will appear on the screen when
you press a key.

Data — basic elements of information which are
processed or produced by the computer.

Default — a standard characteristic or value
which the computer assumes if certain
specifications are omitted within a statement* or
a program®.

Device (sce Accessory Devices)

Disk — a mass storage device capable of
random and sequential access.

User's Reference Guide

V-1

Glossary

Display — {(noun) the video screen;
{verb) to cause characters to appear on the
screen.

Edit Mode — the mode used to change existing
program lines. The EDIT mode 1s entered by
using the Edit Command or by entering the line
number followed by SHIFT[1 |or SHIFT[1]. The
line spectfied 1s displayed on the screen and
changes can be made to any character® using
the ediing keys.

End-of-file — the condition indicating that alf
data* has been read from a file*,

Execute — to run a program: to perform the
task specified by a statement® or command*.

Exponent — a numbcr indicating the power to
which a number or expression* is to be raised:
usually written at the right and above the
number. For example, 2" =2x2x2x2x2x2x2x2.
InT1 BASIC the exponent is entered following
the A symbotl or following the letter "E” in
scientific notation*. For example, 2°=2 A 8;

1.3 x 10*=1.3E25.

Expression — a combination of constants.
variables. and operators which can be evaluated
to a single result. Included are numeric, string,
and relational expressions.

File — a collection of related data records
stored on a device: also used interchangeably
with device® for input/vulput eyuipment which
cannot use multiple files, such as a line printer.

Fixed-length records — records in a filfe* which
are all the same length. If a file has fixed-length
records of 95 characters, each record will be
allocated 95 bytes* even if the datz* occupies
only 76 positions. The computer will add
padding characters on the right to ensure that
the record has the specified length.

Function — a feature which allows you to
specify as “single” operations a variety of
procedures, each of which actually containg a
number of steps; for example, a procedure to
produce the square root via a simple reference
narmie.

*See definition in Glossary.

Graphics — visual constructions on the screern.
such as graphs. patterns. and drawings, both
stationary and amimated. T1 BASIC has built-in
subprograms which provide easy-to-use color
graphic capabilities.

Graphics line — a 32-character line used by the
T1 BASIC graphics subprograms.

Hardware — the various devices which
comprise & computer system. including memory.
the keyboard, the screen, disk drives, line
printers, etc.

Hertz (Hz) — a unit of frequency. One
Hertz =one cycle per second.

Hexadecimal — a base-16 number system using
16 symbols, 0-9 and A-F. It is used as a
convenient "shorthand” way to express binary*
code. For example. 1010 in binary = A in
hexadecimal, 11111111 — FF. Hexadecimal is
used in constructing patterns for graphics
characters in the CALL CHAR subprogram.

Immediate mode — see Command Mode.

Increment — a positive or negative value which
consistently modifies a varrable*.

Input — (noun) data* to be placed in computer
memory; (verb) the process of transferring data
into memory.

Input line — the amount of data* which can be
entered at one time. In TI BASIC, thisis 112
characters.

Internal data-format — data* in the form used
directly by the computer. Internal numeric data
15 8 byfes* long plus 1 byte which specifies the
length. The length for internal string data is one
byte per character in the string* plus one length-
byte.

Integer — a whole number, either positive,
negative. or zero.

I/0 — Input/Output: usually refers to a device
function. /0 is used for communication
between the computer and other devices {e.g.,
keyboard. disk).

V-2

User's Reference Guide

Glossary

Iteration — the technique of repeating a group
of program statements; one repetition of such a
group. See Loop.

Line — see graphics line, input line, print
fine, or program line.

Loop — a group of consecutive program lines
which arc repeatedly performed, usually a
specified number of times.

Mantissa ~ the base number portion of a
number expressed in scientific notation*. In
3.264E +4, the manfissa1s 3.204.

Mass storage device — an accessory device®,
such as a cassette recorder or disk drive, which
stores programs and/or dafa* for later use by
thc computer. This information is usually
recorded in a format readable by the computer.
not people.

Memory — see RAM, and ROM, and mass
storage device.

Module — see Command Module.

Noise — various sounds which can be used to
produce interesting sound effects. A norsse,
rather than a tone, is generated by the CALL
SOUND subprogram* when a negative
frequency value 1s specified (—1 through —8).

Null string — a string* which contains no
characters and has zero length.

Number Mode — the mode assumed by the
computer when it is automatically generating
program line* numbers for entering or changing
statements.

Operator — a symbol used in calculations
{numeric operators) or in relationship
comparisons (relational operators). The numeric
operators are +,—.*/,/A\. The relational
opcrators arc =, =, = > = =l = =l

Overflow — the condition which occurs when a
rounded value greater than
9.9999999999999E 127 or less than
—0.0900000099000E 127 is entered or
computed. When this happens, the value 15
replaced by the computer's limit, a warning is
displayed, and the program* continues.

Output — (noun) information supplied by the
computer; (verb) the process of transferring
information from the computer’s memory onto a
device. such as a screen, line printer, or mass
storage device*.

Parameter — any of a set of values that
determine or affect the output of a statement* or
functron®.

Print line — a 28-position line used by the
PRINT and DISPLAY statements.

Program — a set of statements which tell the
computer how to perform a complete task.

Program line — a line containing a single
statement*. The maximum length of a program
line 1s 112 characters®.

Prompt — a symbol (=) which marks the
beginning of each command* or program line*
you enter; a symbol or phrasc that requests
input from the user.

Pseudo-random number — a number produced
by a definite set of calculations (algorithm) but
which is sufficiently randomn to be considered as
such for some particular purpoge. A true
random number is obtained entirely by chance.

Radix-100 — a number system based on 100.
See "Accuracy Information” for information on

number representation.

RAM — random access memory; the main
memory where program statements and dafa*
are temporarily stored during program
execution*. New programs and data can be read
in, accessed. and changed in RAM. Data stored
in RAM is erased whenever the power is turned
off or BASIC is exited.

Record — {noun) a collection of related data
elements. such as an individual’s payroll
information or a student’s test scores. A group of
similar records, such as a company's payroll
records. is called a file*.

*See definition in Glossary.

User's Reference Guide

V-3

Glossary

Reserved word — in programming languages. a
special word with a predefined meaning. A
reserved word must be spelled correctly. appear
in the proper order in a statement* or
command*, and cannot be used as a variable*
name,

ROM - read-only memory; certain instructions
for the computer are permanently stored in
ROM and can be accessed but cannot be

changed. Turning the power off does not erase
ROM.

Run Mode — when the computer is executing* a
program, 1t 1s in Run Mode. Run Mode is
terminated when program execution ends
normally or abnormally. You can cause the
computer to leave Run Mode hy pressing CLEAR
during program execution (see Breakpoint®).

Scientific notation — a method of expressing
very large or very small numbers by using a
base number {mantissa*) times ten raised to
some power (exponent*). To represent scientific
notation in TI BASIC, enter the sign, then the
mantissa. the letter E. and the power of ten
{preceded by a minus sign if negative). For
cxample. 3.204E4; —247E-17.

Seroll — to move the text on the screen so that
additional information can be displayed.

Software — various programs which are
executed by the computer, including programs
built into the computer, Command Module*
programs, and programs entered by the user.

Statement — an instruction preceded by a line
number in a program. IN TI BASIC. only one
statement 1s allowed in a program line*.

String — a series of letters, numbers, and
symbols treated as a unit.

*¥See definition in Glossary.

Subprogram — a predefined general-purpose
procedure accessible to the user through the
CALL statement in T1 BASIC. Subprograms
extend the capability of BASIC and cannot be
easily programmed in BASIC.

Subroutine — a program segment which can be
used more than once during the execution* of a
program. such as a complex set of calculations
or a print routine. In TI BASIC, a subroutine is
entered by a GOSURB staternent and ends with a
RETURN statement.

Subscript — a numeric expression which
specifies a particular item in an array®. In T1
BASIC the subscript is written in parentheses
immediately following the array name.

Trace — listing the order in which the computer
performs program statements. Tracing the line
numbers can help you find errors in a program
How.

Underflow — the condition which occurs when
the computer generates a nwineric value greater
than —1E —128. less than 1E ~ 128, and not
zero. When an underflow occurs, the value is
replaced hy zero.

Variable — a name given to a value which may
vary during program execution. You can think
of a variable as a memory location where values
can be replaced by new values during program
execution.

Variable-length records — records in a file*
which vary in length depending on the amount
of data* per record®. Using variable-length
records conserves space on a file. Vanable-
length records can only be accessed
sequentially.

V-4

User's Reference Guide

Maintenance and Service Information

IN CASE OF DIFFICULTY

In the event that you have difficulty with your computer, the following instructions may

help you to analyze the problem. You may be able to correct your computer problem

without returning it to a service facility. If the suggested remedies are not successtul, contact
the Consumer Relations Department by mail or telephone (refer to IF YOU HAVE
QUESTIONS OR NEED ASSISTANCE later in this section). Please describe 1in detail the

symptoms of your computer,

If one of the following symptoms appears while operating with the optional peripheral(s) or
accessories, remove the device. If the symptom disappears, refer to the manual for the

peripheral or accessory in question,

SYMPTOM

Console indicator light will not come

on when switch 1s turned on.

No picture.

No sound.

Cassette recorder will not operate
when connected to console, but does
work properly when not connected.

Cassette recorder will not Save or
Load data properly.

Remote Controls will not operate.

BASIC program is cleared by
insertion of a Command Mndule.

Stray characters appear or other

erratic Upcratiun OCCUrs or colputer

will not respond to keyhoard input.

REMEDY

Check that transformer power cord is plugged into
the wall.

Ensure that power cord is connected to the rear of the
console.

Check that power is on. and screen controls are set
for optimum picture. Ensure that cables are properly
connected as specified in the Color Monitor
Operating Guide and Warranty.

Sec that volumc control is turned to propor level.
Check connection of cables.

Ensure that cassette is connected to the 9-pin
connector on the rear ot the umt.

See "General Information.”

Remember that the cassette motor is controlled by
the computer. Read the instructions in the "Cassette
Interface Cable” section.

Ensure that unit is connected to the 9-pin connector
on the feft side of the computer console, and that
ALPHA LOCK is in the off (up) position.

Remember that only certain software 1s designed for
use with the Remote Controls.

This is & normal reset procedure designed to protect
vour color screen.

Static electricity discharges from the user to the
console can alter program data stored in the internal
memory. To correct this problem turn the console off
and then on.

A Command Module especially designed to verify proper operation of the major functions of
your system 1s available at your retailer. You can also purchase the Diagnostic module for

use at home.

User's Reference Guide

V-1

Maintenance and Service Information

When returning your computer for repair or replacement. return the computer console, power
cord, and any Command Modules which were involved when the difficulty occurred. For your
protection, the computer should be sent insured; Texas Instruments cannot assume any
responsibility for loss or damage to the computer during shipment. It is recommended that the
computer be shipped in its original container to minimze the possibility of shipping damage.
Otherwise, the computer should be carefully packaged and adequately protected against shock
and rough handling. Send shipments to the appropriate Texas Instruments Service Facility listed
in the warranty. Pleasc include information on the difficulty experienced with the computer as
well as return address information including name, address, city, state and zip code.

If you cannot determine whether the console or the T Color Monitor/Video Modulator has
failed. both umits must be returned.

If the computer is in warranty, it will be repaired or replaced under the terms of the Limited
Warranty. Qur-of-warranity units in need of service will be repaired or replaced with
reconditioned units (at 'T'l's option}, and service rates in effect at the time of return will be
charged. Because our Service Facility serves the entire United States, it is not feasible to hold
units while providing service estimates. For advance information coucerning service charges,
please call our toll-free number listed on the following page.

NOTE: The Color Monitor is too large to be sent via U.S. parcel post (fourth-class mail) but may
be sent via first-class mail or by common carrier.

EXCHANGE CENTERS

If your computer requires service, instead of returning the unit to your dealer or to a service
facility for repair or replacement. you may elect to exchange the unit for a factory-reconditioned
computer of the same model {or equivalent model specified by T1) by bringing it in person to one
of the exchange centers which have been established across the United States. A handling fee
will be charged by the exchange center for in-warranty exchanges of the computer console and/
or T1 Color Monitor/Video Modulator. Qut-of-warranty exchanges will be charged at the rates in
effect at the time of exchange.

To determine if there is an exchange center in your area, look for Texas Instruments Exchange
Center in the white pages ol your telephivne directory, ot look under the Calculator and Adding
Machine heading in the vellow pages. Please call the exchange center for availability and
exchange fee information. Write Consumer Relations for further details and the location of the
nearest exchange center.

V-2 User's Reference Guide

If you have questions or need assistance

FOR GENERAL INFORMATION

If you have questions concerning computer repair, or peripheral, accessory or software
purchase, please call Customer Relations at 800-858-4565 (toll free within the contiguous
United States). The operators at these numbers cannot provide technical asststance.

FOR TECHNICAL ASSISTANCE

For technical questions about programming, specific computer applications, etc., you
can call 806-741-2663. We regret that this 1s not a toll-free number, and we cannot accept
collect calls.

As an altecrnative, you can write tos

Consumer Relations

Texas Instruments Incorporated
P.O. Box 53

Lubbeck. Texas 79408

Because of the number of suggestions which come to Texas Instruments from many sources
containing both new and old idcas, Texas Instruments will consider such suggestions only if
they are freely given to Texas Instruments. It is the policy of Texas Instruments to refusc to
receive any suggestions in confidence. Therefore, if you wish to share your suggestions with
Texas Instruments. or if you wish us to review any BASIC language program which you have
developed. please include the following statement in your letter:

"All of the information forwarded herewith 1s presented to Texas Instruments on a
nonconfidential, nonobligatory basis: no relationship. confidential or otherwise. expressed
or implied. is established with Texas Instruments by this presentation. Texas Instruments
may use, copyright, distribute, publish. reproduce, or dispose of the mlormation in any
way without compensation to me.”

User's Reference Guide

V-3

IndeXx

A
Absolute value function I1-92
Accessories .,o [-7-1-12
Acccessoryoutlet L oL -4
Accuracy information [11-13
Addition 0 0o [-6,11-13
AlDkey ... 1-6
Alphabet keys I-5
Alphalock I-5
APPEND mode [1-121
Arctangent function oL [1-92
Arithmetic expressions. I1-12
Arithmetic operators I1-12
Arrays II-11, II-108—11-112
ASCII charactercodes I11-1
Assignment statement, [I-45
Audivrout I-4
Autorepeat I-5
B
BACKKkey. [-6
Backspace key oL [-6
BASIC. I1-2
BEGIN key......... [-6
Binarycodes 1-77
Blank spaces.......................... 11-7
Branches, program............... [1-49—1I-51
BREAK command 11-30—-11-32
Break key, -6, 11-22
Breakpoints 11-30, 1I-31, II-33
BYE command [1-24
C
CALL CHAR statement 1I-76—11-79
CALL CLEAR statement 11-72
CALL COLOR statement 1I-73-11-74
CALL GCHAR statement 1I-86
CALL HCHAR statement [1-80—11-82
CALL JOYST statement 11-90
CALL KEY statement............ [1-87-11-89
CALL SCREEN statement. [1-75
CALL SOUND statement [1-84—11-85
CALL VCHAR statement [1-83
Careofconsole. I-1
Caretkey, I-6
Cassette Interface Cable [-8-1-12
Cassette Recorders [-0~]-12
CLOSE statement 11-124
INPUT statement. 11-129

Loading programs from 11-42

QOPEN statement 11-122

PRINT statement. II-135

Saving programson [1-40

With file processing 11118
CHAR subprogram 11-76—11-79
Charactercodes IM-1—111-4
Character function [I-100
Charactersets 11-74, 1111
Characters, defining I1-76
CLEAR key 1.6, 11-6, 1[1-27, 11-39
CLEAR subprogram 11-72
CLOSE statement II-123-11-124
Colorcodes_.... I1-73, 11-75. 111-5
Color combinations 1iI-6
COLOR subprogram 11-73—11-74
Commandmode II-19
Command Modules 1-1
Commands 11-19—-11-43
Commands used as statements 1I-18
Computer transfer

On-GOSUB. 17

On-GOTO 1I-50
Computers hmit 11-9
Concatenation. II-14, I1-15
Constants

NUMEC ot e e e e e [1-0

SUing 11-10
CONTINUE command 11-35
Controlkeys [-6, III-2
Conversiontable. 11I-5
Currecting errors 1-7. 11-4, 1I-26, I1-38
Cosine function.o 11-93
Cursor 11-4
D
Data I1-58, 1I-61, 11-63, 1I-65. 11-125. 1I-131
DATA statement II-63
DEFine statement 11-105
DELETE command 11-43
DELete key = . . I-6, II-6. 11-27, 11-39
DELETEoption 1123
Difficulty, in case of

with cassette recorder =~ [-10, 1-12

with LOAD routine I-12

with SAVE routine I-11
DIMension statement M-110-I1-111
DISPLAY file-type i1-120
DISPLAY statement I[1-70

Vi1

User's Reference Guide

Index

DISPLAY-typedata 1I-126, 11-133 H
DiViSion 1'6, 11‘13 HCHAR Subprggram ,,,,,,,,,,,,, 11-80—11-82
DOWN arrow key I-6, 1I-5, 11-27, 11-38 Hexadecimal H-77
Duration 11-84 Hierarchy, mathematical 1I-113
E i
EDIT command I1-38-11-39 IF-THEN-ELSE statement. [1-51-11-52
Edltmg 11'26, 11'38""11'39 Inﬁx QPEratorso 11-12
End-offile [1-128~11-129 INPUTmode 11-121
End-of-file function f1-130 Input-output statements 11-57—11-70
END statement 11-47 INPUT statement. . . I1-58=11-60. 1I-125—11-129
ENTER key......... I-5, 11-5, I1-26, 11-38 INSertkey I-6, II-6, I1-27, 11-39
ERASE key I-6, II-6, I1-27, 11-39 Interger function 11-94
Error messages. [1-8-111-12 INTERNAL file-type I1-120
Execution, program INTERNAL-type data. .. II-126, 1I-131-11-132
Beginning I1-23
Continuing _. II-35 J
Interrupting. II-6, 11-30 JOYST subprogram 11-90
Terminating 11-47, 11-48 K
Tracing II-36
Kevboard I-4-1-7
Exponent [1-9
; . Keyboardoverlay [-6
Exponential function 11-93 KEY sub 11-87—11-89
Exponentiation 1-6, 11-13 SUDPIOETAM ... - - -cveee e
Expressions 1I-12, 11-14. 11-15 L
F Leaving TIBASIC 11:5,1I-24
Filedifeo 11121 LEFT arrow key ..o 16, I1-5. 11-27, 11-39
. Length function 11-101
Fileename 11-119 Less than 17 1114
File-number 1[-119, 11-123, [I-125, 11-131, 1I-136 [. .. 7 nrnnnnrnnnnnoes ’
. o LET statcment I1-45
File-organization. 11-120 o
: - Limits, computer, 1I-9
File processing [1-118-11-136) :)
. Line numbering, automatic 11-25
Filetype [1-120 .
Line numbers Im7, 118
FIXED record-type I[1-121 LIST d 121
FORNEXT 100D «+ et oeoveeeeee il 11-53 Lo ;;’trgma“ """""""""""
FOR-TO-STEP statement 11-53—11-55)
E d K 16 in Command Modules [-12
OFWATTSPACE XY -+ v vvvreree o S) in TIBASIC I-10, 11-42, 11-125—11-129
Frequency...................... I1-84—-11-85 : . .
. Logarithm function. 11-94
Functionkeys [-5, I11-2 . .
. Loop, iterative I11-53
Functions
Numeric [1-901-11-98 M
String I1-90—11-103 Mantissa -9
User-defined M-104-11-107 Mathkeys I-6
G Mathematical hierarchy 1I-13
itor- 701 » S I-
GCHAR subprogram I[-86 MO“‘.“’Y COPSOIB connection 2
Multiplication 1-6, 11-13
GOSUB statement II-114-1]-115 Musical tone frequencies 1117
GOTO statement 11-49 QUEREIES e
Greaterthan [-7, 1I-14
Grid. ... II-81, [1I-86
User’s Reference Guide VI-2

Index

N
Name (variable) I1-11
NEW command 11-20
NEXT statement. H-56
Noisc I1-84, 11-85
Normal decimalform 1I-66
Notational conventions I1-3
NUMBER command II-25—11-27
Numberkeys 1-5
Numbermode [1-25
Number representation I11-13
Numbers 1I-59, [1-63, 1i-65
Numeric constants [1-9
Numeric expressions, [1-12
Numeric functions [1-01—11-98
Numeric operatorsc...vu.. .. I1-12
Numeric variables 11-11
0
OLD command............ 11-42
ON-GOSUB statement 11-117
ON-GOTO statement 11-50
ON/OFF switch I-4
Open-mode [1-121
QPEN statement 1I-119
Operation keys, 1-6
Operators

Arithmetic. [i-12

Relational 1I-14

Sring ..o e I1-15
OPTION BASE statement II-112
Orderof operations II-13
Outlets. [-4
QUTPUT mede I-121
Overflow e I1-9
Overlay L [-6
P
Parameter. [1-105
Parentheses. 11-13
Pattern-identifier conversion table 111-5
Pendinginputs [1-128
Pending prists [I-135
Peripheraloutlet I-4
PERMANENT file-life 1121
Placement of conseole I-1
Position function. 101
Power cord connection. I-4
Powers I-6
Prefix operators I1-12

Print separators 11-67
PRINT statement . .. 11-65—11-69. [1-131-1I-135
PROCDKkey............. [-6
Program lines 11-4, I1-8, 11-26, 11-28, 11-38
Programs
Applications III-14
Deleting from accessory device 11-43
Editing II-28
Loading from accessory device 11-42
Running 11-23
Saving on accessory device ., 11-40
Pseudo-random numbers 11-96
Punctuation keys -5
Q
QUITKkeyo I-5, 11-5
R
Random number function I1-96
RANDOMIZE statement............... 11-95
READ statement 11-61-11-62
Recorddata [-10-1-12
Record-type [1-121
REDOkeyo [-6
Relational expressions I1-14
Relational operators I1-14
RELATIVE file-organization. [1-120
RELATIVE files 11-127, 1i-134
REMark statement [1-46
Remote controls 1-4, 1-8. 1I-90
RESEQUENCE command. 11-28-11-29
Reservedwords II-16
RESTORE statement I1-64, 11-136
RETURN statement [i-116
RIGHT arrowkey 1-6, 11-5. i1-27, 11-39
RUNcommand 11-53
Running a BASIC program I1-53
S
SAVE command [1-40-1I-41
Save data
in Command Modules [-10-1-12
in TI BASIC ... 11-40-11-41, 11-131, I1-135
Scientific notation 1I-9, I1-66
SCREEN subprogram I1-75
Seed 11-05
SEQUENTIAL file-organization 11-120
SHIFT function 1-5
SHIFT keys I-5
Sign function oo [1-97

VI3

User's Reference Guide

Index

Signum function L L L 11-97
Sine function. 11-97
SOUND subprogram [1-84—11-85
Spacebaro [-7
Special function keys 1.5-1.6, [1-5~11-6
Split console keyboard L. 111-4
Square root function. I1-98
Statement used as command 117
STOP statement. I1-48
Stringconstants I1-10
String cxpressions oL II-15
String functions 11-99-11-103
String-number function I1-103
String segment function Lo L 1102
String variables L [I-11
Strings. [I-10-1i-11, IT-14-1I-15, 1I-63, 1I-65
Subprogramso [1-71—-11-90
Subroutines. [-113-11-117
Subscript. II-111
Subtraction L. I-6,11-13
T
TAB function 1I-68
Tangent function. 11-98
TIBASIC I-1,11-2
Tones 11-84—11-85
TRACE command 11-36
Transformer and power cord

CONNECLION - - . v v o it it e I-3
Trigonometric functions 1[-92—11-94, 11-97-11-98
U
UNBREAK command 11-33—11-34
Underflow I1-9
UNTRACE command 11-37
UP arrow key I-6, II-5, 11-27, 1I-38
UPDATE mode MH-121
User-defined functions [[-104
v
Value function. o L 11-103
VARIABLE rccord-type 11-121
Variables II-11, 11-45, 11-59. 11-61
VCHAR subprogram [1-83
Video-oul. 1-4
Volume 11-84
W-X-Y-Z
Wired Remote Controllers I-8. [1-90

User's Reference Guide

Vi-4

Three-Month Limited Warranty

THIS TEXAS INSTRUMENTS COMPUTER CONSOLE WARRANTY
EXTENDS TO THE ORIGINAL CONSUMER PURCHASER OF THE
CONSOLE.

WARRANTY DURATION

This Computer console is warranted for a period of three (3) months from the
date of the original purchase by the consumer.

WARRANTY COVERAGE

This Computer console is warranted against defective materials or

workmanship. THIS WARRANTY IS VOID IF THE CONSOLE HAS BEEN
DAMAGED BY ACCIDENT, UNREASONABLE USE, NEGLECT, IMPROPER
SERVICE OR OTHER CAUSES NOT ARISING OUT OF DEFECTS IN
MATERIALS OR WORKMANSHIP.

WARRANTY DISCLAIMERS

ANY IMPLIED WARRANTIES ARISING OUT OF THIS SALE, INCLUDING
BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO THE ABOVE THREE-MONTH PERIOD. TEXAS
INSTRUMENTS SHALL NOT BE LIABLE FOR LOSS OF USE OF THE
COMPUTER CONSOLE OR OTHER INCIDENTAL OR

CONSEQUENTIAL COSTS, EXPENSES, OR DAMAGES INCURRED BY THE
CONSUMER OR ANY OTHER USER.

Some states do not allow the exclusion or limitation of implied warranties or
cousequential damages, so the above limitations or exclusions may not apply to you.

LEGAL REMEDIES

This warranty gives you specific legal rights, and you may also have other rights that
vary from state to state.

WARRANTY PERFORMANCE

Please first contact the retailer from whom you purchased the console and determine
the exchange policies of the retailer.

During the above three-month warranty period, your T1 Computer console will

be repaired or replaced with a new or reconditioned console of the same or equivalent
model {(at TI's option) when the console is returned either in person or by prepaid
shipment to a Texas Instruments Service Facility listed below.

Texas Instruments strongly recommends that you insure the console for value, prior to
shipment.

The repaired or replacement console will be warranted for three months from date of

repair or replacement. Other than the cost of shipping the unit to Texas Instruments or
postage, no charge will be made for the repair or replacement of in-warranty consoles.

User's Reference Guide

TEXAS INSTRUMENTS CONSUMER SERVICE FACILITIES

U.S. Residents Canadian Residents

Texas Instruments Service Facility Geophysical Services Incorporated

2303 North University 41 Shelley Road

Lubbock, Texas 79415 Richmond Hill, Ontario, Canada
L4C5G4

Consumers in California and Oregon may contact the following Texas Instruments
office for additional assistance or information.

Texas Instruments Consumer Service Texas Instruments Consumer Service
831 South Douglas Street 6700 Southwest 105th

El Segundo, California 90245 Kristin Square. Suite 110

{213) 973-1803 Beaverton, Oregon 97005

{503) 643-6758

IMPORTANT NOTICE REGARDING PROGRAMS AND BOOK MATERIALS

The following should be read and understood before purchasing and/or using the T1
computer.

TI does not warrant that the programs contained in this computer and accompanying
book materials will meet the specific requirements of the consumer, or that the
programs and book materials will be free from error. The consumer assumes complete
responsibility for any decision made or actions taken based on information obtained
using these programs and book materials. Any statements made concerning the utility
of TI's programs and book materials are not to be construed as express or implied
warranties.

TEXAS INSTRUMENTS MAKES NO WARRANTY, EITHER EXPRESSED
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, REGARDING THESE PROGRAMS OR ROOK
MATERIALS OR ANY PROGRAMS DERIVED THEREFROM AND MAKES
SUCH MATERIALS AVAILABLE SOLELY ON AN “AS IS” BASIS.

IN NO EVENT SHALL TEXAS INSTRUMENTS BE LIABLE TO ANYONE
FOR SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE PURCHASE
OR USE OF THESE PROGRAMS OR BOOK MATERIALS, AND THE SOLE
AND EXCLUSIVE LIABILITY OF TEXAS INSTRUMENTS, REGARDLESS
OF THE FORM OF ACTION, SHALL NOT EXCEED THE PURCHASE PRICE
OF THIS COMPUTER. MOREOVER, TEXAS INSTRUMENTS SHALL

NOT BE LIABLE FOR ANY CLAIM OF ANY KIND WHATSOEVER
AGAINST THE USER OF THESE PROGRAMS OR BOOK MATERIALS BY
ANY OTHER PARTY.

Some states do not allow the exclusion or limitation of implied warranties or
consequential damages, so the above limitations or exclusions may not apply to you.

User’s Reference Guide

7/ 81

Frinfed in U.5.A, 1038031-2

